
System Design
Skills Evaluation Framework

Technical Brief

Introduction

Engineers who design large enterprise sys-
tems (e.g. Software Architects) are respon-
sible for designing and planning different
types of systems and choosing appropriate
tools and techniques to meet the constraints
and requirements for such systems. Some
typical responsibilities for such engineers in-
clude:

• Analyzing system challenges and iden-
tifying the best solution to meet
project needs and constraints

• Taking a project from conception to
completion

• Optimizing systems while maintaining
quality

With such responsibilities, hiring engi-
neers or software architects skilled in system
design practices is critical to the success of
many organizations, and engineering and
talent teams must be able to accurately eval-
uate the technical expertise of candidates for
such roles. Unfortunately, due to a lack of in-
dustry standards, many hiring teams struggle
to evaluate the technical skills of candidates
properly, often using proxies (i.e., previous
experience or pedigree) or poorly-designed
evaluations that fail to effectively capture
candidates’ skills and knowledge.

This paper describes a framework for de-
veloping simulation-based evaluations which
accurately capture signals about the tech-
nical skills of System Design candidates at
scale. The current version of the framework
will concentrate on fundamental building
blocks of system design, excluding solutions
provided by specific cloud providers (AWS,
GCP, Azure, etc.).

Although Software Architects share many
of the core skills and knowledge with Soft-
ware Engineers such as problem-solving and
code-writing, the System Design Framework
is designed specifically to assess skills that
are unique to system design, such as under-
standing storage types and being able to de-
sign secure, scalable, failure-tolerant and
cost-effective applications.

This paper goes into detail about our
guidelines for creating the framework based
on consultation with subject matter experts
with an emphasis on common core skills.

Framework Specifications

The framework is designed to closely
model what the engineer would be expected
to perform on the job. It can be utilized
across different methods of delivery, assess-
ment, or interview while preserving its objec-
tivity by automatically calculating the final
score.

1

The maximum allowed completion time
for the framework is 60 minutes and it con-
sists of 4 progressive levels that are designed
to mimic an interactive system design inter-
view. The scenario and assessment targets
should be common applications and/or fea-
tures that will not create any unfair advan-
tages or disadvantages for any candidates.
Possible scores range from 200 to 600.

Level 1 – Calculations and Estimations
for the System

Completing requirements in the 1st level
will result in a score of up to 25% of the total.
The average time for solving this level should
be 15 minutes.

Expected Knowledge
• Ability to gather relevant information

about the system being designed
• Ability to estimate system and hard-

ware requirements based on the func-
tional requirements

Can Include
• Calculations and capacity estimations

Should Exclude
• Choosing data storage
• Basic or advanced design questions

Level 2 – Basic Design

Completing requirements in this level will
result in a score between 25–50% of the total.
The average time for solving this level should
be 15 minutes.

Expected Knowledge
• Everything from the prior levels
• Understanding of storage types
• Choosing database solutions

• Estimating average and min/max loads
• Basic scaling

Can Include
• Calculations for average load
• Best storage types for the given data

scheme
• Scaling strategies to handle min-max

loads

Should Exclude
• Advanced design questions
• Replication techniques
• Data synchronization techniques

Level 3 – Advanced Design Strategies

Completing requirements in this level will
result in a score between 50–75% of the total.
The average time for solving this level should
be 15 minutes.

Expected Knowledge
• Everything from the prior levels
• Redundancy and fault tolerance
• Database consistency and caching
• Consistency, availability, and perfor-

mance

Can Include
• Load balancers
• Replication
• Message queues
• Communication between services

Should Exclude
• Cache coherency techniques
• Disaster recovery and availability on

different geographical locations

Level 4 – Fine Tuning of the System to

2

Handle Additional Constraints and Edge
Cases

Completing requirements in this level will
result in a score between 75-100% of the
total. The average time for solving this level
should be 15 minutes.

Expected Knowledge
• Everything from the prior levels
• Cache coherence
• Disaster recovery and availability

zones
• CDNs
• Optimization of tools and techniques

based on statistical data

Can Include
• Cost optimizations
• Consistency, availability, and/or per-

formance improvements

Should Exclude
• Basic design related questions

Framework Example Content

Below is an example of a question that is established based on the structure of the frame-
work. Similar questions are also created and monitored on an ongoing basis to ensure overall
consistency as well as to prevent widespread cheating and plagiarism.

Scenario: Design a parking lot management system.

Imagine that you are designing an automated system for managing a parking lot. The system should consider:
• The lot has multiple floors, with each floor having several parking spots
• Each parking spot can be occupied by only one vehicle at a time
• Current capacity (remaining parking spots) should be monitored and displayed at the entrance
• Customers can:

◦ Request to park by collecting a parking ticket upon entry, and paying at the exit
◦ Buy a subscription to reserve a spot in the parking lot

• Average usage based on historical trends:
◦ 2 new subscriptions per day
◦ 15 000 parking requests per day

Functional requirements:
• Should be able to handle up to 30 000 parking requests per day
• Should be able to handle the capacity of 6 000 parking spots total across 4 floors
• Should be able to store all information for up to 10 years

Non-functional requirements:
• Should have high consistency and availability

Details about service costs:
• Database storage costs

◦ Hot – 0.002 $/GB

3

◦ Cool – 0.001 $/GB
◦ Archive – 0.0005 $/GB

Other notes:
• 1 year = 365 days
• 1 KB = 1000 B

You are given the following data schemas for requests and subscriptions of the parking lot management system.

Requests (72B)

id: 8B

spotId: 8B

carPlateId: 8B

startTime: 16B

endTime: 16B

status: 16B

Subscription (72B)

id: 8B

userId: 8B

carPlateIds[3]: 24B

startDate: 16B

endDate: 16B

Note: subscriptions can be used for up to 3 different license plates.

Level 1 – Calculations and estimations for the system

Before diving into the design, determine the scope of system resources. For this level, your task is to calculate
data requirements based on the expected usage of the parking lot.

Questions

1. What is the amount of requests data written per year in bytes?

2. What is the amount of subscriptions data written per year in bytes?

Level 2 – Advanced Design Strategies

Your task is to consider the basic design of the system.

Questions

1. What type of database should be used to ensure a high level of consistency?

2. You are developing a service to run some algorithms on old data – the data of the
previous week will be run very frequently, however, the older data will be run a
few times a year. What type of storage should be used to ensure that the architec-
ture is cost-effective?

Level 3 – Advanced Design Strategies

For this level, your task is to extend the basic design so the system can handle corner cases and advanced con -

4

straints.

Questions

1. You have a car plate scanning service that verifies that either the car has a sub-
scription or a ticket is booked upon entry. The service frequently fails due to
camera failures. How would you improve the fault tolerance of the service?

2. There are performance issues at certain times of the day when the number of re-
quests exceeds the average load. What type of scaling should be used to resolve
the issue?

Level 4 – Fine Tuning of the System to Handle Additional Constraints and Edge Cases

For this level, your task is to optimize the system design based on feedback and service changes (i.e., structural
changes to the parking lot).

Parking Lot Upgrade

As the parking lot became very popular, new entrances have been added to improve traffic
flow within the lot.

Questions

1. How would you handle the consistency for the cars coming through the multiple en-
trances?

2. Analytics suggest that usage of the lot on Fridays to Sundays is almost twice as
high compared to other days of the week. How do you react to this information?

5

