
Quality Assurance Engineering
Skills Evaluation Framework

Technical Brief

Introduction

In software development, Quality Assur-
ance (QA) engineers are responsible for im-
plementing test plans, creating automated
tests, documenting identified defects in new
software for application improvement, and
test maintenance. The demand for this role is
projected to grow 22 percent from 2020 to
2030, faster than the average for all occupa-
tions1. The growth in demand for QA talent
requires organizations to implement innova-
tive ways to accurately assess such talent at
scale.

With QA engineers playing a key role in
the entirety of the software development life-
cycle, there has been a shift in industry re-
quired skills to include programming compe-
tencies in parallel with closer collaboration
with software developers. This framework
paper will outline core QA engineering skills,
including understanding user stories, manual
testing, creating automated tests, and test
maintenance.

This paper will outline the core compo-
nents of the QA Engineering Skills Evaluation
Framework based on industry research and
consultation with subject matter experts. It
will also illustrate the scoring distribution

across modules and how the given score will
map to the core skills of a QA engineer.

Framework Specifications

The framework is designed to model
closely to what the QA engineer would be ex-
pected to perform on the job. It can be uti-
lized across different methods of delivery, as-
sessment or interview, while preserving its
objectivity by automatically calculating the
final score.

The maximum allowed completion time
for the framework is 90 minutes and consists
of 4 levels that mimic a real world scenario.
These levels are sequential in nature where
each subsequent level adds on additional
complexity for a candidate to solve. The sce-
narios presented have also been designed to
introduce minimal industry-specific context
so as to create an agnostic evaluation and re-
duce any bias within the candidate popula-
tion. Possible scores range from 200 to 600.

Level 1 – Manual Quality Assurance

The average time for solving this level should
be 10 minutes.

Expected Knowledge
• Understanding a testing plan

1Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Web Developers and Digital Designers, at
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm

1

• Understanding user stories and being
able to replicate the user flow

Can Include
• Manual testing of a web application
• Manual Graphical User Interface

testing
• Manual End to End testing

Should Exclude
• Scripting
• Unit tests
• Automation testing

Level 2 – Component Testing

The average time for solving this level should
be 20 minutes. Typically, candidates should
expect to write 10-15 lines of code for this
level.

Expected Knowledge
• Basic programming knowledge and

understanding of application code
• Understanding existing tests for

sample application
• Implementing corrections for existing

component tests

Can Include
• Understanding of functions, methods,

and existing component tests for
sample application

• Understanding of input and expected
output

• Identifying corner cases in the appli-
cation logic

Should Exclude
• Writing novel unit tests
• Writing production code

• Writing and testing new automated
tests (integration, end-to-end, etc.)

Level 3 – API Testing

The average time for solving this level should
be 30 minutes. Typically, candidates should
expect to write 40-60 lines of code for this
level

Expected Knowledge
• Ability to write tests that cover all user

interactions across user stories
• Ability to read/understand a test plan
• Knowledge of how to asynchronously

call remote APIs from the browser and
handling errors and authentication

Can Include
• Everything from the prior level
• Implementing planned test cases from

scratch
• Writing tests to cover all API end-

points within a defined REST API
based on API documentation and user
stories

Should Exclude
• Writing production code
• Unit testing

Level 4 – Test Evolution

The average time for solving this level
should be 30 minutes. Typically, candidates
should expect to write 70-90 lines of code for
this level.

Expected Knowledge
• Understanding new user stories and

feature specifications
• Refactor and modify existing tests to

2

satisfy new user stories and feature
specifications

• Evaluating test errors to identify indi-
cations of false positive results

• Knowledge of advanced API concepts
like pagination and rate limiting

Can Include
• Everything from the prior level
• Implementing novel test cases from

scratch
• Divergent thinking to understand test

cases to prioritize

Should Exclude
• Writing production code
• Test case planning and design
• Ability to prioritize test cases based on

user requirements and code coverage

Scoring Methodology

Evaluating a candidate’s test quality
presents a novel challenge to general skills
evaluation techniques, which is generally

confined to logical or semantic comparisons
between a functional output to a predefined
output. Additionally, traditional quantitative
testing metrics like code coverage and effi-
ciency do not provide a strong signal on the
objective quality of tests written by a candi-
date.

In order to circumvent these issues, the
framework leverages mutation testing tech-
niques to measure the quality of a candidate’s
tests. Mutation testing is a well-researched
practice of creating artificial changes within
a piece of software in order to evaluate if an
existing test suite is able to detect the inten-
tionally created changes.

Based on the user stories defined at each
level, the framework thus introduces a series
of intentional mutations to the application
being tested by the candidate, which thus al-
lows for an evaluation of the candidate’s tests
by quantifying the number of mutants cor-
rectly identified. These are then weighted ap-
propriately for the level and attributed to the
overall score for the candidate.

Framework Example Content

Below is an example of a question that is established based on the structure of the frame-
work. Similar questions are also created and monitored on an ongoing basis to ensure overall
consistency as well as preventing widespread cheating and plagiarisms.

Scenario: Test a message posting application similar to Twitter.

Level 1 – Manual Quality Assurance

You are currently working with an engineering team who is working to develop a new message posting applica -
tion. The engineering team just delivered new features for the application with the following user stories.
Ask: Manually test the application and return up to two user stories that are faulty in the new application

3

User Stories
• As a User, I want to be able to create new posts, so that I can share a message

with other users.

• As a User, I want to be able to delete existing posts, so that I can remove a mes-
sage I no longer want to share with other users.

• As a User, I want to be able to edit existing posts, so that I can make updates to
the message I am sharing with other users.

• As a User, I want to be able to like an existing post shared by other users, so
that I can show my support for their message.

Context: The candidate will be presented with an actual web application to test manually, and will input the user
story id into the input fields provided.

Figure 1: Sample Manual Testing Application

Level 2 – Component Testing

Engineering just finished the development and testing of the liking functionality of a message posting applica-
tion, and you are now tasked with testing this functionality.
Ask: The test cases provided in the test file have been written against the table provided. The test file has listed
one incomplete test case per user operation from the table. Complete the automated test cases in the test file to
ensure the tests are testing the new user logic. The user story and the class are defined as follows:

4

User Stories

• As a User, I want to be able to like an existing post shared by other users, so
that I can show my support for their message.

• As a User, I want to be able to unlike an existing post shared by other users that
I have liked, so that I can withdraw my support for their message.

postingApplication.py

 1 class Post:
 2 def __init__(self, postId, posterId, message, likedUserIds):
 3 self.postId = postId
 4 self.posterId = posterId
 5 self.message = message
 6 self.likedUserIds = {}
 7
 8

 9 class User:
10 def __init__(self, userId, userName):
11 self.userId = userId
12 self.userName = userName
13
14

15 class postingApplication:
16 def __init__(self):
17 self.posts = {}
18 self.users = {}
19

20 def likePost(self, userId, postId):
21 self.posts.get(postId).likedUserIds
22 .add(userId)
23

24 def unlikePost(self, userId, postId):
25 self.posts.get(postId).likedUserIds
26 .remove(userId, None)
27

28 def getLikes(self, postId):
29 self.posts.get(postId).len(likedUserIds)

As shown in the following table, we have collected actual user data from users of the `postingApplication` class
to serve as the basis of the component tests.

User Operation Result
Like a message that has not been liked by the user Post is liked by the user

Like a message that has already been liked by the user No change in post like status

Unlike a message that has already been liked by the
user

Post is no longer `liked` by the user

Unlike a message that has been not liked by the user No change in post like status

Table 1: Test case user data for component tests of the postingApplication class

Context: The candidate will be presented a testing file with existing test cases to provide structure to the candi-
date. The candidate will have to fill in the code to make the tests run as defined in the user data table, which
mimics a simplified testing plan.

5

Level 3 – API Testing

When a message is posted, this should propagate across a posting application. This feature is built around an API
microservice that captures, retrieves and publishes the messages.
Ask: Write the automated test cases in the test file to ensure that the new API works as per the requirements.

User Stories

• As a User, I want to be able to view messages posted by all users, so that I can
get updated on the overall activity of users on the application

• As a User, I want to be able to view messages posted by a specific user, so that I
can get updated on their activity only

• As a User, I want to be able to create new posts, so that I can share a message
with other users

The service operates at the URI: https://api.codesignalcontent.com/postingApplication/posts with the endpoints
defined as follows:

Endpoint Method Description
posts/ GET Returns a list of the latest messages posted by

all users

posts/{userId} GET Returns the latest (up to 5) messages posted by
the `userId`

posts/{postId} POST Publishes a `Post` object, assigned to the
`userId` that calls the method.

This should propagate across the application and
be visible to other users.

Table 2: Posting Application API Endpoints

Examples:
GET post/

200 Response

 1 {
 2 "posts":
 3 {
 4 "postId": 5,
 5 "posterId": 5,
 6 "message": "Stop spamming!!!",
 7 "likedUserIds": {2}
 8 },
 9 {
10 "postId": 4,
11 "posterId": 1,
12 "message": "Testing 123",
13 "likedUserIds": {1}
14 },
15 {
16 "postId": 3,
17 "posterId": 2,
18 "message": "Hello World",
19 "likedUserIds": {2, 3}
20 },
21 {

6

22 "postId": 2,
23 "posterId": 2,
24 "message": "This is so cool!",
25 "likedUserIds": {}
26 },
27 {
28 "postId": 1,
29 "posterId": 1,
30 "message": "Just setting up my account",
31 "likedUserIds": {1, 2}
32 }
33 }

GET post/user_id=1

200 Response

 1 {
 2 "posts":
 3 {
 4 "postId": 4,
 5 "posterId": 1,
 6 "message": "Testing 123",
 7 "likedUserIds": {1}
 8 },
 9 {
10 "postId": 1,
11 "posterId": 1,
12 "message": "Just setting up my account",
13 "likedUserIds": {1, 2}
14 }
15 }

POST post/1

Request

1 {
2 "status": "success"
3 }

200 Response

1 {
2 "post":
3 {
4 "postId": 1,
5 "posterId": 1,
6 "message": "Just setting up my account",
7 "likedUserIds": {}
8 }
9 }

Context: This level is similar to level 2 but introduces API testing. The candidate will be presented a testing file
with a single test case defined to provide structure to the candidate. Following which the candidate will have to
create additional tests, based on the user stories and API end-points provided.

Level 4 – Test Evolution

The engineering team has added on a newly implemented feature, that unfortunately impacts the testing suite
that you have developed earlier.
Ask: You are to review the existing tests from the previous level, and implement end-to-end tests for additional
newly implemented features, using the following data. Assume that the postingApplication class has been
both unit and component tested, and no bugs have been detected.

7

User Stories

• As a User, I want to be able to share another user’s post, so that I can share a
message with other users.

• As a User, I want to be able to navigate through messages posted by a specific
user, so that I can get updated on their historical activity.

A rate limiting feature has also been implemented to protect the service against Denial of Service (DoS) attacks.
Hence, users calling the API from the same IP address will only be able to do so up to a maximum of 50 instances
within a 24 hour period. In addition, please assume that the testing plan is not comprehensive, and implement
additional tests that would be relevant.

Endpoint Method Description
posts/ GET Returns a list of the latest messages posted by all

users

posts/{userId} GET Returns the latest (up to 5) messages posted by the
`userId`

posts/{userId}?page={pageNum} GET If the `userId` has more than 5 posts:
Returns the messages posted by the `userId` corre-
sponding to the page defined in the GET request

If the `userId` has less than 5 posts:
Returns the latest (up to 5) messages posted by the
`userId`

posts/{postId} POST If `postId` doesn’t exist:
Publishes a `post` object from the user_id that calls
the method.

If `postId` exists:
Reshares the `post` object and pushes it to the top of
the message list.

In both cases, this should propagate across the posting
application

Table 3: Posting Application Updated API Endpoints

EndPoint Request/Response Data
GET
posts/1

Response Data: User exists
 1 {
 2 "post":
 3 {
 4 "postId": "1",
 5 "posterId": 1,
 6 "message": "Just setting up my account",
 7 "likedUserIds": {1, 2}
 8 "reposted": {1, 2}
 9 }
10 }

GET
posts/3

Response DataL: User does not exist
1 {
2 "status": "user not found"
3 }

GET
posts/2?
page=2

Response Data: User has more than 5 posts
 1 {
 2 "post":
 3 {
 4 "postId": "8",

8

 5 "posterId": 2,
 6 "message": "Amazing tacos",
 7 "likedUserIds": {4, 5}
 8 "reposted": {}
 9 },
10 {
11 "postId": "17",
12 "posterId": 2,
13 "message": "Going to the beach",
14 "likedUserIds": {5}
15 "reposted": {}
16 },
17 {
18 "postId": "6",
19 "posterId": 2,
20 "message": "Love this concert",
21 "likedUserIds": {2, 3, 4}
22 "reposted": {}
23 }
24 }

POST
posts/1

Request Data
1 {
2 "status": "success"
3 }

Response Data: Post exists
 1 {
 2 "post":
 3 {
 4 "postId": "1",
 5 "posterId": 1,
 6 "message": "Just setting up my account",
 7 "likedUserIds": {1, 2}
 8 "reposted": {1, 2}
 9 }
10 }

Table 4: Test Data

Context: This level introduces a new feature that causes potential breaking changes to the candidate’s tests
written in level 3. This means that candidates will need to both refactor existing test cases and implement new
test cases in this level. Additionally, advanced API concepts like the rate limiting feature in this example, is in -
cluded to encourage candidates to design and implement additional test cases that might not have been explicitly
defined in the testing plan as part of the evaluation.

9

