
Machine Learning Engineering
Core Skills Evaluation Framework

Technical Brief

Introduction

 With the growing need for organizations
to take advantage of the surplus of structured
and unstructured data they have at their dis-
posal and the rapid development of machine
learning technologies, the demand for engi-
neering talent in this domain is ever-in-
creasing. In fact, the demand for Machine
Learning Engineers (MLEs) is projected to
grow between 13-22% from 2020 to 20301

Despite such overwhelming interest in
MLE talent, hiring MLEs is a turbulent and
inefficient process. Many engineering and
talent teams struggle to evaluate the tech-
nical skills of MLE candidates effectively,
often using proxies (i.e., previous experience
or pedigree) or poorly-designed evaluations
that do not accurately or consistently capture
candidates’ knowledge and skills.

This paper describes a framework for de-
veloping simulation-based evaluations that
accurately capture signals about the tech-
nical skills of MLE candidates at scale. With
the growing popularity of MLE, there is a
large influx of candidates switching domains
into MLE, as well as growth in MLE-focused
academic programs, contributing to an in-
creasing number of new graduates entering

the field. Framework-based evaluations will
allow engineering and talent teams to greatly
scale their hiring processes and make effec-
tive hiring decisions while providing a fair
and engaging experience for candidates.

Generally, MLEs focus on developing soft-
ware related to machine learning, deep
learning, and artificial intelligence. To suc-
ceed, MLEs must display a diverse skill set,
including: 1) cleaning and manipulating data;
2) experimenting with and evaluating various
models and algorithms; 3) following and in-
corporating research on machine learning,
deep learning, and artificial intelligence; 4)
solving complex problems in effective and
efficient ways; and 5) understanding and in-
corporating key business metrics when de-
signing machine learning product pipelines.

Although MLEs share a similar skillset as
with both Data Scientists and Software Engi-
neers, MLEs generally have stronger coding
skills than Data Scientists and greater knowl-
edge of machine learning, deep learning, and
artificial intelligence than Software Engi-
neers. This Framework, developed based on
consultation with leading MLE subject matter
experts, is designed specifically to assess the
knowledge and skills within this domain.

1 Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Computer and Information Technology
Occupations, at https://www.bls.gov/ooh/computer-and-information-technology

1

Framework Specifications

The framework is designed to closely sim-
ulate the fundamental knowledge and skills a
candidate would be expected to have within
most Machine Learning Engineering roles
across industries. The framework can be uti-
lized to create evaluations that span across
different methods of delivery, such as pre-
screen assessments or technical interviews,
while providing objective signals by automat-
ically calculating a final score to represent a
candidate's skill level.

Evaluations based on this framework con-
sist of 3 modules that target coding skills
(both general and specific to machine
learning) and a breadth of fundamental ma-
chine learning topics. The specific content
will be common across MLE jobs within a va-
riety of industries to avoid any unfair advan-
tages or disadvantages for different candidate
populations. The expected completion time
for evaluations based on this framework is
55-75 minutes. In order to balance the depth
and breadth of content and candidate experi-
ence, the evaluation time for this frame-
work is 70 minutes. Possible scores range
from 200 to 600.

Module 1 – Machine Learning Fundamen-
tals

This module contains 6 scenario-based
quiz questions with an average solve time of
5-10 minutes.

Expected Knowledge
• Understanding of theories behind

common machine learning algo-
rithms, models, and concepts; typi-
cally acquired from courses that do

not require research knowledge or
practical experience

Can Include
• Multiple choice and fill-in-the-blank

questions to measure breadth of fun-
damental machine learning knowl-
edge, for example:

° L1 vs L2 Regularization
° Reasons for overfitting
° Limitations of Bayes rule
° Choosing k in a KNN algorithm

° GBM vs Random Forest
° Neural Network fundamentals

Should Exclude
• Complex calculations that require any-

thing beyond a simple calculator or
paper and pencil to solve

• Complex machine learning algorithms
and concepts that are predominantly
used in a specific sub-field (e.g., com-
puter vision, NLP)

Module 2 – Data Manipulation

This module contains 1 basic coding ques-
tion. The average time for solving this ques-
tion should be 10-15 minutes, and candidates
are expected to write 15-20 lines of code.

Expected Knowledge
• Working with numbers

° Basic operations with numbers
° Splitting numbers into digits

• Basic string manipulation
° Splitting a string into substrings
° Comparing strings
° Modifying elements of a string

2

° Concatenating strings
° Reversing a string

• Basic array manipulation
° Iterating over an array
° Modifying elements of an array
° Reversing an array

Can Include
• A combination of 3 to 5 basic data

structure concepts, for example:
° Splitting a string into sub-

strings, modifying each sub-
string, and comparing each
substring with other substrings

° Creating two new arrays from
an array given some conditions;
modifying the second array and
appending it to the beginning of
the first array

• Requirements that are usually solvable
using one or two nested loops

• Descriptions that should clearly state
implementation steps

Should Exclude
• Anything that requires noticing or

proving patterns
• Anything that requires optimizing al-

gorithms
• Anything that requires knowledge of

classic or niche algorithms

Module 3 – Machine Learning Algorithms
Implementation

This module contains 2 coding questions
focusing on machine learning algorithms.
The average time for solving these questions
should be 20-25 minutes per question, and
candidates are expected to write 15-25 lines
of code.

Expected Knowledge
• Understanding common machine

learning models and concepts
• Implementing functions and algo-

rithms used in common machine
learning models

Can Include
• Implementing a complete ML model,

components of a ML model, or a ML
concept based on a high-level over-
view of how the algorithm or concept
works, for example:

° k-Nearest Neighbors
° k-Means Clustering
° Decision Trees
° Gaussian Mixture Models
° Matrix Normalization
° Bagging
° Forward Propagation

Should Exclude
• Any machine learning algorithm or

concept that requires pre-built li-
braries or packages, such as: Sklearn,
Pytorch, Tensorflow, Keras

• Optimizing hyperparameters of a ma-
chine learning algorithm

3

Framework Example Content

Below are example questions for each module of the framework2. Similar questions are
consistently being developed in accordance with framework specifications and monitored on
an ongoing basis to minimize the impact of potential leaks that could result in cheating or pla-
giarism, ensure the reliability and validity of evaluations, and provide relevant and fair candi-
date experiences through changing industry standards.

Module 1 – Machine Learning Fundamentals

Neural Network Fundamentals
Given the following scheme of a simple neural network, please calculate what the output value will be based on
the randomly initialized weights. Please assume all bias estimates are 0, and round your answer to the nearest
thousandths (three decimal places, e.g., 0.000).

Note: Activation functions at f1 and f2 are linear activation functions, while f3 is a sigmoid activation func-
tion.

Module 2 – Data Manipulation

Task
Imagine that you are working on a text classification project and part of the project requires feature engineering.
One feature of interest is counting the number of words that contain triple duplicate letters in a given text string.
Given a string sentence consisting of English words separated by whitespaces, count the number of words that
contain triple duplicate letters – i.e., the same letter appearing at least three times within the word.
Note: letters should be counted in a case-insensitive manner (i.e., "Pipe" and "pipe" would both count as con-
taining 2 "p"s). Also, consider words as any sequence of consecutive letters separated by a whitespace, which
may or may not have any semantic meaning.

Example
For sentence = "Dooddle moodle Pepper unsuccessfully", the output should be solution(sentence) =
3.

2 Example questions are for reference only, and examples may not match the exact number of questions outlined for each module in the
framework.

4

Explanation:
Let's take a look at all the words in this sentence:

• The word "Dooddle" contains a triple duplicate letter, as "d" appears three times;

• The word "moodle" does NOT contain a letter that appears three times;

• The word "Pepper" contains a triple duplicate letter, as "p" appears three times;

• The word "unsuccessfully" contains 2 triple duplicate letters, as both "u" and "s" appear three times.

Overall, there are 3 words in this sentence that contain triple duplicate letters, so the final answer is 3.

Module 3 – Machine Learning Algorithms Implementation

Task
Your task is to implement parts of the k-Nearest Neighbors (kNN) algorithm from scratch (i.e., without im -
porting any libraries or packages). The k-Nearest Neighbors classification is comprised of three major steps:

1. Calculate distance. For this task, use Euclidean Distance as the distance metric:

2. Identify k nearest neighbors

3. Assign class label by majority vote

To validate the algorithm, you will need to use it for some classification tasks. Specifically, you will be given a
two-dimensional array of float values train_data as training data, where each subarray train_data[i] repre-
sents a unique case, and the last element in each subarray train_data[i] represents the true class label. You
will also be given test_data as test data, with the same format as the training data (just without class labels). As-
suming that k is provided, create a kNN model on the training data, use the model to classify the test data, and
return class labels (float values) for the test data.
Note: It is guaranteed that all training and test data will be float values. Skeleton code for assigning and re-
turning class labels has already been created, so please do not edit them. You should only implement code under
the # implement this sections.

Skeleton Code (Python 3)
 1 # define distance metric
 2 def euc_dist(value1, value2):
 3 # implement this
 4 pass
 5
 6 # identify k nearest neighbors
 7 def k_neighbors(train_data, test_case, k):
 8 # implement this
 9 pass
10
11 # assign class labels
12 def get_label(train_data, test_case, k):
13 neighbors = k_neighbors(train_data, test_case, k)
14 labels = [row[-1] for row in neighbors]

5

15 max_label = max(set(labels), key = labels.count)
16 return max_label
17
18 # pull it together
19 def solution(train_data, test_data, k):
20 final_labels = list()
21 for row in test_data:
22 label = get_label(train_data, row, k)
23 final_labels.append(label)
24 return final_labels

Example
For
train_data = [[-2.6, 1.9, 2.0 , 1. 0, 1.0],

 [-2.8, 1.7, -1.2, 1.5, 2.0],
 [2.0, -0.9, 0.3, 2.3, 0.0],
 [-1.5, -0.1, -1.6, -1.1, 0.0],
 [-1.0, -0.6, -1.2, -0.7, 0.0],
 [-0.3, 1.2, 2.6, 0.2, 1.0],
 [-1.8, -1.3, -0.1, -1.2, 0.0],
 [0.2, 1.2, -0.6, -1.3, 1.0],
 [-5.2, 0.3, 0.2, 2.2, 2.0],
 [-0.8, -0.1, 1.5, -0.1, 0.0],
 [-2.3, 0.3, 0.8, 0.7, 2.0],
 [0.2, 3.0, 3.6, -0.9, 1.0],
 [1.7, -0.8, -0.0, 2.0, 0.0],
 [2.8, 0.8, 1.8, -0.7, 2.0]]

test_data = [[-0.1, 1.4, 0.4, -1.0],
 [-1.3, 0.2, -1.3, -0.8],
 [-1.1, 1.5, -2.3, -2.5],
 [0.2, 2.0, -0.1, -0.8],
 [-0.3, -1.6, -3.4, -1.4]]

and k = 3, the output should be solution(train_data, test_data, k) = [1.0, 0.0, 0.0, 1.0, 0.0].

Explanation:
For each case in test_data, the kNN algorithm should:

1. Calculate its Euclidean Distance to all cases in train_data
2. Identify the k = 3 nearest cases in train_data based on Euclidean Distances, and extract their class labels
3. Assign a class label based on the most prevalent class label among the closest cases in train_data

For example, the class labels for the k = 3 closest cases to test_data[0] are train_data[5][4] = 1.0,
train_data[7][4] = 1.0, and train_data[9][4] = 0.0. So, the class label for test_data[0] = 1.0 based
on majority vote among its closest training cases. Similarly, the class labels for the k = 3 closest cases to
test_data[1] are train_data[3][4] = 0.0, train_data[4][4] = 0.0, and train_data[7][4] = 1.0. So,
the class label for test_data[1] = 0.0 based on majority vote among its closest training cases.

6

