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Introduction

 With the growing need for organizations 
to take advantage of the surplus of structured 
and unstructured data they have at their dis-
posal and the rapid development of machine 
learning technologies, the demand for engi-
neering  talent  in  this  domain  is  ever-in-
creasing.  In  fact,  the  demand  for  Machine 
Learning  Engineers  (MLEs)  is  projected  to 
grow between 13-22% from 2020 to 20301

Despite  such  overwhelming  interest  in 
MLE talent,  hiring MLEs is a turbulent and 
inefficient  process.  Many  engineering  and 
talent  teams  struggle  to  evaluate  the  tech-
nical  skills  of  MLE  candidates  effectively, 
often using proxies (i.e., previous experience 
or  pedigree)  or  poorly-designed evaluations 
that do not accurately or consistently capture 
candidates’ knowledge and skills. 

This paper describes a framework for de-
veloping  simulation-based  evaluations  that 
accurately  capture  signals  about  the  tech-
nical skills of MLE candidates at scale. With 
the  growing  popularity  of  MLE,  there  is  a 
large influx of candidates switching domains 
into MLE, as well as growth in MLE-focused 
academic  programs,  contributing  to  an  in-
creasing number of new graduates entering 

the field.  Framework-based evaluations will 
allow engineering and talent teams to greatly 
scale their hiring processes and make effec-
tive  hiring  decisions  while  providing  a  fair 
and engaging experience for candidates.

Generally, MLEs focus on developing soft-
ware  related  to  machine  learning,  deep 
learning,  and artificial  intelligence.  To  suc-
ceed, MLEs must display a diverse skill  set, 
including: 1) cleaning and manipulating data; 
2) experimenting with and evaluating various 
models and algorithms; 3) following and in-
corporating  research  on  machine  learning, 
deep  learning,  and artificial  intelligence;  4) 
solving  complex  problems  in  effective  and 
efficient ways; and 5) understanding and in-
corporating  key  business  metrics  when  de-
signing machine learning product pipelines. 

Although MLEs share a similar skillset as 
with both Data Scientists and Software Engi-
neers, MLEs generally have stronger coding 
skills than Data Scientists and greater  knowl-
edge of machine learning, deep learning, and 
artificial  intelligence  than  Software  Engi-
neers. This Framework, developed based on 
consultation with leading MLE subject matter 
experts, is designed specifically to assess the 
knowledge and skills within this domain. 

1 Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Computer and Information Technology 
Occupations, at https://www.bls.gov/ooh/computer-and-information-technology 
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Framework Specifications

The framework is designed to closely sim-
ulate the fundamental knowledge and skills a 
candidate would be expected to have within 
most  Machine  Learning  Engineering  roles 
across industries. The framework can be uti-
lized  to  create  evaluations  that  span across 
different  methods  of  delivery,  such  as  pre-
screen assessments  or  technical  interviews, 
while providing objective signals by automat-
ically calculating a final score to represent a 
candidate's skill level.

Evaluations based on this framework con-
sist  of  3  modules  that  target  coding  skills 
(both  general  and  specific  to  machine 
learning) and a breadth of fundamental ma-
chine  learning  topics.  The  specific  content 
will be common across MLE jobs within a va-
riety of industries to avoid any unfair advan-
tages or disadvantages for different candidate 
populations.  The  expected  completion  time 
for  evaluations  based  on  this  framework is 
55-75 minutes. In order to balance the depth 
and breadth of content and candidate experi-
ence,  the  evaluation  time  for  this  frame-
work  is  70  minutes.  Possible  scores  range 
from 200 to 600.

Module 1 – Machine Learning Fundamen-
tals

This  module  contains 6  scenario-based 
quiz questions with an average solve time of 
5-10 minutes.

Expected Knowledge
• Understanding of theories behind 

common machine learning algo-
rithms, models, and concepts; typi-
cally acquired from courses that do 

not require research knowledge or 
practical experience

Can Include
• Multiple choice and fill-in-the-blank 

questions to measure breadth of fun-
damental machine learning knowl-
edge, for example:

° L1 vs L2 Regularization
° Reasons for overfitting
° Limitations of Bayes rule
° Choosing k in a KNN algorithm

° GBM vs Random Forest
° Neural Network fundamentals

Should Exclude
• Complex calculations that require any-

thing beyond a simple calculator or 
paper and pencil to solve

• Complex machine learning algorithms 
and concepts that are predominantly 
used in a specific sub-field (e.g., com-
puter vision, NLP)

Module 2 – Data Manipulation

This module contains 1 basic coding ques-
tion. The average time for solving this ques-
tion should be 10-15 minutes, and candidates 
are expected to write 15-20 lines of code.

Expected Knowledge
• Working with numbers

° Basic operations with numbers
° Splitting numbers into digits

• Basic string manipulation
° Splitting a string into substrings
° Comparing strings
° Modifying elements of a string
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° Concatenating strings
° Reversing a string

• Basic array manipulation
° Iterating over an array
° Modifying elements of an array
° Reversing an array

Can Include
• A combination of 3 to 5 basic data 

structure concepts, for example:
° Splitting a string into sub-

strings, modifying each sub-
string, and comparing each 
substring with other substrings

° Creating two new arrays from 
an array given some conditions; 
modifying the second array and 
appending it to the beginning of 
the first array

• Requirements that are usually solvable 
using one or two nested loops

• Descriptions that should clearly state 
implementation steps

Should Exclude
• Anything that requires noticing or 

proving patterns
• Anything that requires optimizing al-

gorithms
• Anything that requires knowledge of 

classic or niche algorithms

Module 3 – Machine Learning Algorithms 
Implementation

This module contains  2 coding questions 
focusing  on  machine  learning  algorithms. 
The average time for solving these questions 
should be  20-25 minutes  per  question,  and 
candidates are expected to write  15-25 lines 
of code.

Expected Knowledge
• Understanding common machine 

learning models and concepts
• Implementing functions and algo-

rithms used in common machine 
learning models

Can Include
• Implementing a complete ML model, 

components of a ML model, or a ML 
concept based on a high-level over-
view of how the algorithm or concept 
works, for example:

° k-Nearest Neighbors
° k-Means Clustering
° Decision Trees
° Gaussian Mixture Models
° Matrix Normalization
° Bagging
° Forward Propagation

Should Exclude
• Any machine learning algorithm or 

concept that requires pre-built li-
braries or packages, such as: Sklearn, 
Pytorch, Tensorflow, Keras

• Optimizing hyperparameters of a ma-
chine learning algorithm

3



Framework Example Content

Below are example questions for each module of the framework2. Similar questions are 
consistently being developed in accordance with framework specifications and monitored on 
an ongoing basis to minimize the impact of potential leaks that could result in cheating or pla-
giarism, ensure the reliability and validity of evaluations, and provide relevant and fair candi-
date experiences through changing industry standards.

Module 1 – Machine Learning Fundamentals

Neural Network Fundamentals
Given the following scheme of a simple neural network, please calculate what the output value will be based on 
the randomly initialized weights. Please assume all bias estimates are 0, and round your answer to the nearest  
thousandths (three decimal places, e.g., 0.000).

Note: Activation functions at f1 and f2 are linear activation functions, while f3 is a sigmoid activation func-
tion. 

Module 2 – Data Manipulation

Task
Imagine that you are working on a text classification project and part of the project requires feature engineering.  
One feature of interest is counting the number of words that contain triple duplicate letters in a given text string. 
Given a string sentence consisting of English words separated by whitespaces, count the number of words that 
contain triple duplicate letters – i.e., the same letter appearing at least three times within the word. 
Note: letters should be counted in a case-insensitive manner (i.e., "Pipe" and "pipe" would both count as con-
taining 2 "p"s). Also, consider words as any sequence of consecutive letters separated by a whitespace, which 
may or may not have any semantic meaning.

Example
For sentence = "Dooddle moodle Pepper unsuccessfully", the output should be solution(sentence) = 
3.

2 Example questions are for reference only, and examples may not match the exact number of questions outlined for each module in the 
framework.
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Explanation:
Let's take a look at all the words in this sentence:

• The word "Dooddle" contains a triple duplicate letter, as "d" appears three times;

• The word "moodle" does NOT contain a letter that appears three times;

• The word "Pepper" contains a triple duplicate letter, as "p" appears three times;

• The word "unsuccessfully" contains 2 triple duplicate letters, as both "u" and "s" appear three times.

Overall, there are 3 words in this sentence that contain triple duplicate letters, so the final answer is 3.

Module 3 – Machine Learning Algorithms Implementation

Task
Your task is to implement parts of the k-Nearest Neighbors (kNN) algorithm from scratch (i.e.,  without im -
porting any libraries or packages). The k-Nearest Neighbors classification is comprised of three major steps:

1. Calculate distance. For this task, use Euclidean Distance as the distance metric:

2. Identify k nearest neighbors

3. Assign class label by majority vote

To validate the algorithm, you will need to use it for some classification tasks. Specifically, you will be given a  
two-dimensional array of float values train_data as training data, where each subarray train_data[i] repre-
sents a unique case, and the last element in each subarray train_data[i] represents the true class label. You 
will also be given test_data as test data, with the same format as the training data (just without class labels). As-
suming that k is provided, create a kNN model on the training data, use the model to classify the test data, and 
return class labels (float values) for the test data. 
Note: It  is guaranteed that all training and test data will be float values. Skeleton code for assigning and re-
turning class labels has already been created, so please do not edit them. You should only implement code under  
the # implement this sections.

Skeleton Code (Python 3)
 1    # define distance metric
 2    def euc_dist(value1, value2):
 3        # implement this
 4        pass
 5    
 6    # identify k nearest neighbors
 7    def k_neighbors(train_data, test_case, k):
 8        # implement this
 9        pass
10    
11    # assign class labels
12    def get_label(train_data, test_case, k):
13        neighbors = k_neighbors(train_data, test_case, k)
14        labels = [row[-1] for row in neighbors]
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15        max_label = max(set(labels), key = labels.count)
16        return max_label
17    
18    # pull it together
19    def solution(train_data, test_data, k):
20        final_labels = list()
21        for row in test_data:
22            label = get_label(train_data, row, k)
23            final_labels.append(label)
24        return final_labels

Example
For
train_data = [[-2.6, 1.9, 2.0 , 1. 0, 1.0],

 [-2.8, 1.7, -1.2, 1.5, 2.0],
 [2.0, -0.9, 0.3, 2.3, 0.0],
 [-1.5, -0.1, -1.6, -1.1, 0.0],
 [-1.0, -0.6, -1.2, -0.7, 0.0],
 [-0.3, 1.2, 2.6, 0.2, 1.0],
 [-1.8, -1.3, -0.1, -1.2, 0.0],
 [0.2, 1.2, -0.6, -1.3, 1.0],
 [-5.2, 0.3, 0.2, 2.2, 2.0],
 [-0.8, -0.1, 1.5, -0.1, 0.0],
 [-2.3, 0.3, 0.8, 0.7, 2.0],
 [0.2, 3.0, 3.6,  -0.9, 1.0],
 [1.7, -0.8, -0.0, 2.0, 0.0],
 [2.8, 0.8, 1.8, -0.7, 2.0]]

test_data = [[-0.1, 1.4, 0.4, -1.0],
 [-1.3, 0.2, -1.3, -0.8],
 [-1.1, 1.5, -2.3, -2.5],
 [0.2, 2.0, -0.1, -0.8],
 [-0.3, -1.6, -3.4, -1.4]]

and k = 3, the output should be solution(train_data, test_data, k) = [1.0, 0.0, 0.0, 1.0, 0.0].

Explanation:
For each case in test_data, the kNN algorithm should: 

1. Calculate its Euclidean Distance to all cases in train_data
2. Identify the k = 3 nearest cases in train_data based on Euclidean Distances, and extract their class labels
3. Assign a class label based on the most prevalent class label among the closest cases in train_data

For example, the class labels for the  k  = 3 closest  cases to  test_data[0] are  train_data[5][4]  = 1.0, 
train_data[7][4] = 1.0, and train_data[9][4] = 0.0. So, the class label for test_data[0] = 1.0 based 
on majority vote among its  closest  training cases.  Similarly,  the class labels for the  k  = 3 closest  cases to 
test_data[1] are train_data[3][4] = 0.0, train_data[4][4] = 0.0, and train_data[7][4] = 1.0. So, 
the class label for test_data[1] = 0.0 based on majority vote among its closest training cases.
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