
Industry Coding
Skills Evaluation Framework

Technical Brief

Introduction

Software engineering roles have exponen-
tially increased over the last decade, and will
continue to expand at a rapid pace as corpo-
rations invest heavily into building out digital
infrastructure and scale their technical capa-
bilities. While rapid digitalization has led the
paradigm shift in terms of the way businesses
operate, hiring processes remain relatively
slow and ineffective.

This paper describes a framework for de-
veloping simulation-based evaluations that
accurately capture high-quality signals of the
technical skills held by candidates applying
to software engineering jobs at scale. Frame-
work-based evaluations are expertly designed
and highly structured, allowing engineering
and talent teams to efficiently scale their
hiring process and make effective hiring de-
cisions while providing a fair and engaging
experience for candidates.

The Industry Coding Skills Evaluation
Framework described in this paper can be
used to create Certified Evaluations to mea-
sure core coding skills. This Framework was
developed based on researching software en-
gineering jobs and consultation with subject
matter experts. Certified Evaluations pow-
ered by this framework are designed to as-
sess the key knowledge and skills that are

commonly required for experienced software
engineering roles across a wide variety of or-
ganizations and industries, including:

• Software design patterns
• Code implementation
• Problem solving
• Data structures and data processing
• Maintaining codebases via refactoring

and encapsulation

Framework Specifications

The Industry Coding Skills Evaluation
Framework is designed to assess the coding
skills of senior software developers or engi-
neers around the key principles of validity,
scalability, and fairness. Each evaluation con-
tains 1 language-agnostic, project-based
task with 4 progressive levels. The max-
imum allowed completion time for the as-
sessment is 90 minutes; however, candidates
are not necessarily expected to complete all
tasks within this time limit. While longer as-
sessments allow more accurate measurement
of candidate skills, the willingness to com-
plete assessments decreases dramatically for
tests longer than 2 hours. Moreover, a major
factor in assessing candidates’ skill levels is
to see how far they can progress within the
given time frame.

The project-based task is designed around

1

a set of four progressive levels that increase
in complexity. At each level, new methods
and entities are introduced while retaining
the integrity of previously implemented
method contracts. This ensures that candi-
dates will not have to completely change
their existing implementations, but they will
be required to refactor the code to replicate a
real-world working scenario and iterative
software development methodologies.

Solving Industry Coding Framework tasks
will require candidates to write code to im-
plement required functionality described in
the task. The overall goal for candidates is to
write code efficiently while accounting for in-
creasingly complex requirements. As such,
all tasks explicitly describe the project-based
and progressive nature of the levels, and en-
courage candidates to complete as many re-
quirements as possible within the time limit.
This simulates the evolving and deadline-
driven nature of real-world coding projects.
Possible scores range from 200 to 600.

Level 1 – Initial Design & Basic Functions

The first level assesses general program-
ming abilities and the use of basic data struc-
tures. At this level, candidates are expected
to implement 3-4 simple methods. Typically,
candidates should expect to spend 10-15
minutes on this level while writing 15-20
lines of code.

Can Include
• Basic implementation (conditions,

loops, type conversions, strings, etc.)
• Basic data structures (1-2D arrays,

lists, hash tables)
• Covering corner cases

• Error handling

Should Exclude
• Advanced data structures
• Advanced implementation
• Any complex algorithms, problem

solving, optimizations

Level 2 – Data Structures & Data Pro-
cessing

The second level introduces the imple-
mentation of data processing functions, such
as calculations, and aggregations, or ex-
porting, while also assessing the ability to
reuse code from Level 1. Specifically, this
level is focused on implementation skills, and
does not require advanced algorithms,
problem solving, or optimizations. At this
level, candidates are expected to implement
1-2 additional methods of medium difficulty.
Typically, candidates should expect to spend
20-30 minutes on this level, and write 30-45
lines of code for both Level 1 and Level 2.

Can Include
• Intermediate implementation (data

processing, statistical functions, etc.)
• Processing large streams of data (pro-

jection, filtering, aggregation, etc.)
• Reusing and building on existing code
• Advanced built-in data structures

(counters, linked lists, sorted sets, etc.)
• Manipulate data representations based

on commonly used formats (JSON,
CSV, etc.)

Should Exclude
• Complex or niche algorithms (binary

search, two pointers, dynamic pro-
gramming, etc.)

2

• Data optimizations
• Use of third-party libraries
• Use of non-built-in advanced data

structures
• Parsing data files (JSON, CSV, etc.)

Level 3 – Refactoring & Encapsulation

The third level requires candidates to ex-
tend and maintain their existing codebase
from Level 1 and Level 2. This level will as-
sess the ability to refactor or encapsulate
functionality from the previous levels to sup-
port new features.

The difficulty of this level depends on the
quality of the previously implemented
methods – the more reusable the previous
methods are, the easier it will be to imple-
ment new functionality. At this point in the
project, code design will have an interme-
diate impact on performance, as inefficient
designs will be costly to refactor. At this level,
candidates are expected to implement 3-5 ad-
ditional methods of medium to advanced
difficulty, some of which are encapsulations
of previous functionality with additional
logic. Candidates may also be expected to add
some helper methods and classes upon im-
plementation. Typically, candidates should
expect to spend 30-60 minutes on this level,
and write 90-130 lines of code for Level 1,
Level 2, and Level 3.

Can Include
• Refactoring or encapsulation tech-

niques to incorporate additional func-
tionalities while maintaining back-
ward compatibility for existing code

• Advanced implementation and
problem solving without complex al-

gorithms
• Basic software design patterns and

principles
• Advanced built-in data structures

(sorted maps, linked lists/queues,
stacks, etc.)

Should Exclude
• Advanced techniques (concurrency,

parallelism, distributed computing,
etc.)

• Complex or niche algorithms (binary
search, two pointers, dynamic pro-
gramming, etc.)

• Use of third-party libraries
• Use of non-built-in advanced data

structures

Level 4 – Extending Design & Function-
ality

The fourth level is the final level, which fi-
nalizes the project by implementing 1-2 addi-
tional methods that enhance functionality
and are backward compatible with the ex-
isting architecture designed in previous
levels. Similar to Level 3 but to an even
greater extent, the difficulty of this level will
be dependent on the scalability and
reusability of the previous levels—the more
reusable the previous methods are, the easier
it will be to refactor and implement addi-
tional functionality. At this point in the
project, efficient code design will have a sig-
nificant impact on performance, as an ineffi-
cient codebase will be almost impossible to
refactor and encapsulate within the time
limit. At this level, candidates are expected to
implement 1-2 additional methods of
medium to advanced difficulty, depending on

3

their previous implementation. Typically,
candidates should expect to spend 30-60
minutes on this level, and write 110-160
lines of code to complete the entire project.

Can Include
• Adjusting previous functionalities

without regressions
• Advanced implementation and

problem solving without complex al-
gorithms

• Refactoring or encapsulation tech-
niques to incorporate additional func-
tionalities while maintaining back-
ward compatibility for existing code

• Optimal software design patterns and

principles
• Advanced built-in data structures

(sorted maps, linked lists/queues,
stacks, etc.)

Should Exclude
• Advanced techniques (concurrency,

parallelism, distributed computing,
etc.)

• Complex or niche algorithms (binary
search, two pointers, dynamic pro-
gramming, etc.)

• Use of third-party libraries
• Use of non-built-in advanced data

structures

Framework Example Content

Below is an example of a question that is established based on the structure of the frame-
work. Similar questions are also created and monitored on an ongoing basis to ensure overall
consistency as well as to prevent widespread cheating and plagiarism.

Scenario

Your task is to implement a simplified version of a file hosting service. All operations that should be supported
are listed below. Partial credit will be granted for each test passed, so press “Submit” often to run tests and re -
ceive partial credits for passed tests. Please check tests for requirements and argument types.

Implementation Tips
Read the question all the way through before you start coding, but implement the operations and complete the
levels one by one, not all together, keeping in mind that you will need to refactor to support additional function-
ality. Please, do not change the existing method signatures.

Task

Example of fire structure with various files:
1 ----- [server34] ----- 24000 Bytes Limit -------
2 ----------------------- Size -------
3 +- file-1.zip 4321 Bytes
4 +- dir-a
5 | +- dir-c

4

6 | | +- file-2.txt 1100 Bytes
7 | | +- file-3.csv 2122 Bytes
8 +- dir-b
9 | +- file-4.mdx 3378 Bytes

Level 1 – Initial Design & Basic Functions
• FILE_UPLOAD(file_name, size)

° Upload the file to the remote storage server
° If a file with the same name already exists on the server, throws a runtime exception

• FILE_GET(file_name)

° Returns size of the file, or nothing if the file doesn’t exist
• FILE_COPY(source, dest)

° Copy the source file to a new location
° If the source file doesn’t exist, throws a runtime exception
° If the destination file already exists, overwrites the existing file

Level 2 – Data Structures & Data Processing
• FILE_SEARCH(prefix)

° Find top 10 files starting with the provided prefix. Order results by their size in descending
order, and in case of a tie by file name.

Level 3 – Refactoring & Encapsulation
Files now might have a specified time to live on the server. Implement extensions of existing methods which in-
herit all functionality but also with an additional parameter to include a timestamp for the operation, and new
files might specify the time to live - no ttl means lifetime being infinite.

• FILE_UPLOAD_AT(timestamp, file_name, file_size)

• FILE_UPLOAD_AT(timestamp, file_name, file_size, ttl)

° The uploaded file is available for ttl seconds.
• FILE_GET_AT(timestamp, file_name)

• FILE_COPY_AT(timestamp, file_from, file_to)

• FILE_SEARCH_AT(timestamp, prefix)

° Results should only include files that are still “alive”

Level 4 – Extending Design & Functionality
• ROLLBACK(timestamp)

° Rollback the state of the file storage to the state specified in the timestamp
° All ttls should be recalculated accordingly

5

