
General Coding
Skills Evaluation Framework

Technical Brief

Introduction

In today's business landscape, digital
transformation, especially in the context of
software development, has become a primary
source of competitive advantage for organi-
zations. This is reflected in the widely-held
belief that “every company is now a software
company” [1]. To thrive in this environment,
organizations must find ways to identify top
technical talent better and faster than the
competition. Accordingly, demand for tech-
nical talent, particularly software developers
or engineers, has grown rapidly. In fact, the
demand for software engineer jobs is
projected to grow at an accelerated rate of
more than 25% between 2021 to 2031 [2].

Unfortunately, current hiring processes
tend to be inefficient and ineffective, either
by requiring too much time for senior engi-
neers to manually vet candidates through
time-intensive interviews or through the use
of inefficient evaluations that do not accu-
rately or consistently capture candidates’
skills. As a result, organizations are becom-
ing increasingly concerned with the struc-
ture, consistency, and scalability of their
hiring processes for software engineers. Such
concerns call for a standardized approach to
creating automated evaluations, which will
allow organizations to evaluate the skills of

software engineering candidates with a high
degree of accuracy, consistency, and fairness
while enabling them to scale to meet the
growing demand for technical talent.

This paper describes a framework for
developing simulation-based evaluations that
accurately capture high-quality signals of the
technical skills held by candidates applying
to software engineering jobs at scale. Frame-
work-based evaluations are expertly designed
and highly structured, allowing engineering
and talent teams to efficiently scale their
hiring process and make effective hiring
decisions while providing a fair and engaging
experience for candidates.

The General Coding Skills Evaluation
Framework described in this paper can be
used to create Certified Evaluations to
measure core coding skills. This Framework
was developed based on researching software
engineering jobs and consultation with
subject matter experts. Certified Evaluations
powered by this framework are designed to
assess the key knowledge and skills that are:
1) generally taught in computer science
programs (including coding boot camps) and
2) commonly required for software engineer-
ing roles across a wide variety of organiza-
tions and industries.

Framework Specifications

1

The purpose of this framework is to
provide a blueprint for developing valid and
reliable evaluations of candidates’ role-rele-
vant skills for software engineering and
related roles at scale. The framework can be
utilized to create evaluations that span across
different delivery methods, such as pre-
screen assessments or technical interviews,
while providing objective signals by generat-
ing scores to quantify candidates’ skills.

Evaluations based on this framework
consist of four modules, with one question
each, that require candidates to write code
based on specified requirements. Each
module has a slightly different focus, but all
modules are designed to capture one or more
of these core coding skills:

1. Basic Coding
2. Data Manipulation
3. Implementation Efficiency
4. Problem Solving

Candidates are given an opportunity to
demonstrate their skills by effectively solving
questions within the modules. For example,
solving Basic Coding questions demonstrates
skill in writing basic code to conduct basic
operations such as working with numbers,
strings, and arrays. Similarly, solving Prob-
lem Solving questions demonstrates under-
standing of challenging computing problems
and knowledge of algorithms that can effi-
ciently solve those problems (e.g., greedy,
two pointers, etc.).

To balance the breadth and depth of the
evaluation content with the goals of fostering
a positive candidate experience, the maxi-
mum allowed time for this framework is 70
minutes (for 4 code writing questions).

Longer evaluations allow for increased
measurement precision and improve the
quality of signal–however, the more time-
intensive evaluations become, the more
reluctant candidates are to complete them.
Moreover, solving the questions in the given
timeframe is an important indicator of skill
and a key factor in differentiating between
candidate skill levels. This time-constrained
process simulates on-the-job demands, as
software engineers often balance multiple
tasks simultaneously. Additionally, offering a
limited, 70-minute timeframe helps prevent
candidates from engaging in behaviors such
as spending time searching for answers
online, further promoting the validity of eval-
uations powered by the framework.

The following sections outline specifica-
tions for each module within the General
Coding Framework at a high level. These
specifications can be used to create varia-
tions of questions while ensuring evaluation
results are comparable across candidates.
Possible scores range from 200 to 600.

Module 1 – Basic Coding

This module contains one coding question
focusing on basic coding concepts and opera-
tions. On average, candidates are expected to
write 5-10 lines of code and solve this within
10 minutes.

Expected Knowledge
• Basic operations with numbers
• Basic string manipulation, such as

splitting a string into substrings or
modifying the elements of a string

• Basic array manipulation, such as iter-
ating over an array

2

Can Include
• Questions that require a combination

of 2 to 3 basic concepts, such as condi-
tionally iterating over an array, or
conditionally splitting a string

• Questions that should generally be
solvable using a single loop

• Clear descriptions of implementation
with step-by-step instructions

Should Exclude
• Questions that require noticing or

proving patterns
• Questions that require knowledge of

basic algorithms or optimization
• Questions that require designing or

figuring out implementation details

Module 2 – Data Manipulation

This module contains one coding question
focusing on manipulating data structures. On
average, candidates are expected to write 10-
20 lines of code and solve this within 15
minutes.

Expected Knowledge
• Working with numbers, including

° Basic operations with numbers
° Splitting numbers into digits

• Basic string manipulation
° Splitting a string into substrings
° Comparing strings

• Modifying elements of a string
° Concatenating strings
° Reversing strings

• Basic array manipulation
° Iterating over an array
° Modifying the elements of an

array
° Reversing an array

° Concatenating two arrays

Can Include
• Questions that require a combination

of 3 to 5 basic concepts, for example:
° Splitting a string into

substrings, then modifying each
substring and comparing each
with other substrings

° Iterating over an array to split
into two arrays, then modifying
the second array and appending
it to the first array

• Questions that should generally be
solvable using 1 to 2 nested loops

• Clear descriptions of implementation
with step-by-step instructions

Should Exclude
• Questions that require noticing or

proving patterns
• Questions that require knowledge of

basic algorithms or optimization

Module 3 – Implementation Efficiency

This module contains one coding question
focusing on implementing solutions that can
run efficiently and adheres to execution time
limits. On average, candidates are expected
to write 25-40 lines of code and solve this
within 20 minutes.

Expected Knowledge
• Includes everything from module 1

and module 2
• Splitting overall requirements into

subtasks or functions
• Manipulating multidimensional

arrays, for example:
° Iterating over elements within

3

nested arrays in a given order
° Transposing or pivoting the

rows and columns values in a
2D array

• Using built in hashmaps to store
strings or integers as keys

Can Include
• Implementing a specific comparator

for strings
• Implementing a specific merge func-

tion for arrays
• Other implementation challenges

which require translating step-by-step
instructions into code

Should Exclude
• Questions that require noticing or

proving patterns
• Questions that require algorithms with

advanced data structures, such as
binary indexed trees

• Questions that require complex topics,
such as graphs, number theory, or
dynamic programming

Module 4 – Problem Solving

This module contains one coding question
focusing on applying algorithmic techniques
to implement optimal solutions. On average,
candidates are expected to write 25-35 lines
of code and solve this within 30 minutes.

Expected Knowledge
• Includes everything from module 1,

module 2, and module 3
• Implementing common algorithms to

optimize solutions, such as greedy,
divide and conquer, and two pointers

• Implementing abstract data types such

as hashmaps within solutions
• Discrete mathematics fundamentals

Can Include
• Questions that require implementing

an appropriate algorithm, data struc-
ture, or technique

• Questions that require optimizing
queries using data structures like
hashmaps or sets

Should Exclude
• Questions designed like brain teasers
• Questions that require knowledge of

specialized or advanced algorithms,
such as Dijkstra, Kruskal, or Fast
Fourier transform (FFT)

• Questions with complicated or time-
consuming implementation steps that
would be difficult to optimize

4

Framework Example Content

Below are example questions for each module within the framework. Similar questions are
developed in accordance with framework specifications on an ongoing basis to minimize the
impact of leaks that could result in cheating or plagiarism, as well as provide relevant and fair
candidate experiences through changing industry standards.

Module 1 – Basic Coding
Given an array a, your task is to output an array b of the same length by applying the following transformation:

• For each i from 0 to a.length - 1 inclusive, b[i] = a[i - 1] + a[i] + a[i + 1]
• If an element in the sum a[i - 1] + a[i] + a[i + 1] does not exist, use 0 in its place
• For instance, b[0] = 0 + a[0] + a[1]

Example
For a = [4, 0, 1, -2, 3]:

• b[0] = 0 + a[0] + a[1] = 0 + 4 + 0 = 4
• b[1] = a[0] + a[1] + a[2] = 4 + 0 + 1 = 5
• b[2] = a[1] + a[2] + a[3] = 0 + 1 + (-2) = -1
• b[3] = a[2] + a[3] + a[4] = 1 + (-2) + 3 = 2
• b[4] = a[3] + a[4] + 0 = (-2) + 3 + 0 = 1

So, the output should be solution(a) = [4, 5, -1, 2, 1].

Sample Solution (python)
 1 def solution(a):
 2 n = len(a)
 3 b = [0 for _ in range(n)]
 4 for i in range(n):
 5 b[i] = a[i]
 6 if i > 0:
 7 b[i] += a[i - 1]
 8 if i < n - 1:
 9 b[i] += a[i + 1]
10 return b

Module 2 – Data Manipulation
You are given two strings: pattern and source. The first string pattern contains only the symbols 0 and 1, and
the second string source contains only lowercase English letters. Your task is to calculate the number of
substrings of source that match pattern.

We’ll say that a substring source[l..r] matches pattern if the following three conditions are met:
• The pattern and substring are equal in length.
• Where there is a 0 in the pattern, there is a vowel in the substring.
• Where there is a 1 in the pattern, there is a consonant in the substring.

Vowels are ["a", "e", "i", "o", "u", "y"]. All other letters are consonants.

Example
For pattern = "010" and source = "amazing", the output should be solution(pattern, source) = 2.

• "010" matches source[0..2] = "ama". The pattern specifies "vowel, consonant, vowel". "ama"
matches this pattern: 0 matches a, 1 matches m, and 0 matches a.

• "010" doesn’t match source[1..3] = "maz"

5

• "010" matches source[2..4] = "azi"
• "010" doesn’t match source[3..5] = "zin"
• "010" doesn’t match source[4..6] = "ing"

So, there are 2 matches.

For pattern = "100" and source = "codesignal", the output should be solution(pattern, source) = 0.
• There are no double vowels in the string "codesignal", so it’s not possible for any of its substrings to

match this pattern.

Guaranteed constraints:
• 1 ≤ source.length ≤ 103
• 1 ≤ pattern.length ≤ 103

Example Solution (python)
 1 vowels = ['a', 'e', 'i', 'o', 'u', 'y']
 2
 3 def check_for_pattern(pattern, source, start_index):
 4 for offset in range(len(pattern)):
 5 if pattern[offset] == '0':
 6 if source[start_index + offset] not in vowels:
 7 return 0
 8 else:
 9 if source[start_index + offset] in vowels:
10 return 0
11 return 1
12 def solution(pattern, source):
13 answer = 0
14 for start_index in range(len(source) - len(pattern) + 1):
15 answer += check_for_pattern(pattern, source, start_index)
16 return answer

Module 3 – Implementation Efficiency
You are given a matrix of integers field of size height × width representing a game field, and also a matrix of inte -
gers figure of size 3 × 3 representing a figure. Both matrices contain only 0s and 1s, where 1 means that the cell is
occupied, and 0 means that the cell is free.

1

1 The actual image is presented to candidates in an animated gif format, which can be viewed here.

6

You choose a position at the top of the game field where you put the figure and then drop it down. The figure
falls down until it either reaches the ground (bottom of the field) or lands on an occupied cell, which blocks it
from falling further. After the figure has stopped falling, some of the rows in the field may become fully occu -
pied.

Your task is to find the dropping position such that at least one full row is formed. As a dropping position, you
should return the column index of the cell in the game field which matches the top left corner of the figure’s 3 × 3
matrix. If there are multiple dropping positions satisfying the condition, feel free to return any of them. If there
are no such dropping positions, return -1.

Note: The figure must be dropped so that its entire 3 × 3 matrix fits inside the field, even if part of the matrix is
empty.

Examples
For
field = [[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0],
 [1, 0, 0],
 [1, 1, 0]]

and
figure = [[0, 0, 1],
 [0, 1, 1],
 [0, 0, 1]]

The output should be solution(field, figure) = 0. As you can see, the field is a 3 x 3 matrix and the figure
can be dropped only from position 0. When the figure stops falling, two fully occupied rows are formed, so drop-
ping position 0 satisfies the condition.

2

For
field = [[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [1, 1, 0, 1, 0],
 [1, 0, 1, 0, 1]]

and
figure = [[1, 1, 1],
 [1, 0, 1],

2 The actual image is presented to candidates in an animated gif format, which can be viewed here.

7

 [1, 0, 1]]

the output should be solution(field, figure) = 2.

The figure can be dropped from three positions: 0, 1, and 2. As you can see below, a fully occupied row will be
formed only when dropping from position 2:

3

Sample Solution (python)
 1 def solution(field, figure):
 2 height = len(field)
 3 width = len(field[0])
 4 figure_size = len(figure)
 5
 6 for column in range(width - figure_size + 1):
 7 row = 1
 8 while row < height - figure_size + 1:
 9 can_fit = True
10 for dx in range(figure_size):
11 for dy in range(figure_size):
12 if field[row + dx][column + dy] == 1 and figure[dx][dy] == 1:
13 can_fit = False
14 if not can_fit:
15 break
16 row += 1

3 The actual image is presented to candidates in an animated gif format, which can be viewed here.

8

17 row -= 1
18
19 for dx in range(figure_size):
20 row_filled = True
21 for column_index in range(width):
22 if not (field[row + dx][column_index] == 1 or
23 (column <= column_index < column + figure_size and\
24 figure[dx][column_index - column] == 1)):
25 row_filled = False
26 if row_filled:
27 return column
28 return -1

Module 4 – Problem Solving

Given an array of unique integers numbers, your task is to find the number of pairs of indices (i, j) such
that i ≤ j and the sum numbers[i] + numbers[j] is equal to some power of 2. Note: The numbers 20 = 1, 21 =
2, 22 = 4, 23 = 8, etc. are considered to be powers of 2.

Examples
For numbers = [1, -1, 2, 3], the output should be solution(numbers) = 5.

• There is one pair of indices where the sum of the elements is 20 = 1: (1, 2): numbers[1] + numbers[2] =
-1 + 2 = 1

• There are two pairs of indices where the sum of the elements is 21 = 2: (0, 0) and (1, 3)
• There are two pairs of indices where the sum of the elements is 22 = 4: (0, 3) and (2, 2)
• In total, there are 1 + 2 + 2 = 5 pairs summing to powers of 2.

For numbers = [2], the output should be solution(numbers) = 1.
• The only pair of indices is (0, 0) and the sum is equal to 22 = 4. So, the answer is 1.

For numbers = [-2, -1, 0, 1, 2], the output should be solution(numbers) = 5.
• There are two pairs of indices where the sum of the elements is 20 = 1: (2, 3) and (1, 4)
• There are two pairs of indices where the sum of the elements is 21 = 2: (2, 4) and (3, 3)
• There is one pair of indices where the sum of the elements is 22 = 4: (4, 4)
• In total, there are 2 + 2 + 1 = 5 pairs summing to powers of 2.

Guaranteed constraints:
• 1 ≤ numbers.length ≤ 105
• -106 ≤ numbers[i] ≤ 106

Sample Solution (python)
 1 from collections import defaultdict
 2
 3 def solution(numbers):
 4 counts = defaultdict(int)
 5 answer = 0
 6 for element in numbers:
 7 counts[element] += 1
 8 for two_power in range(21):
 9 second_element = (1 << two_power) - element
10 answer += counts[second_element]
11 return answer

9

