
General Coding
Skills Evaluation Framework

Technical Research Paper
Albert Sahakyan and Tigran Sloyan

Published July 2019; Updated April 2023
Abstract – As the focus on digital transformation and software development grows in modern organizations, there is an ever-
increasing demand for skilled software developers and engineers. This demand for talent has led to a surge in demand for
scalable hiring solutions that can efficiently assess the technical capabilities of job candidates, especially their coding skills.
However, due to the lack of standardized assessments, many organizations rely on idiosyncratic and inefficient hiring prac-
tices that are difficult to scale and provide poor signals about candidates. To address this, we introduce the General Coding
Skills Evaluation Framework (aka General Coding Framework), a blueprint for creating Certified Evaluations that provide re-
liable, high-quality, fair, and objective signals about the core coding skills required for software engineering jobs across in-
dustries. Such evaluations produce Coding Scores, which are easily understood metrics that quantify candidates’ core coding
skills. We discuss research on core coding skills captured by the framework, and present population-level data from General
Coding Framework Certified Evaluations. Adopting evaluations created from the General Coding Framework can revolu-
tionize hiring processes, enabling organizations to identify top technical talent better and faster than the competition.

Introduction
In today's business landscape, digital

transformation, especially in the context of
software development, has become a primary
source of competitive advantage for organi-
zations. This is reflected in the widely-held
belief that “every company is now a software
company” [1]. To thrive in this environment,
organizations must find ways to identify top
technical talent better and faster than the
competition. Accordingly, demand for tech-
nical talent, particularly software developers
or engineers, has grown rapidly in recent
years. In fact, the demand for software engi-
neer jobs is projected to grow at an acceler-
ated rate of more than 25% between 2021 to
2031 [2].

Unfortunately, the status quo in today’s
technical recruiting and hiring processes is to
use resumes as a proxy for skill, which leads
to biased and inefficient recruiting and evalu-

ation practices. Even among organizations
that don’t rely on resumes, current hiring
processes tend to be inefficient and ineffec-
tive, either by requiring too much time for se-
nior engineers to manually vet candidates
through time-intensive interviews or through
the use of inefficient evaluations that do not
accurately or consistently capture candidates’
skills. As a result, organizations are be-
coming increasingly concerned with the
structure, consistency, and scalability of their
hiring processes for software engineers. Such
concerns call for a standardized approach to
creating automated evaluations, which will
allow organizations to evaluate the skills of
software engineering candidates with a high
degree of accuracy, consistency, and fairness
while enabling them to scale to meet the
growing demand for technical talent.

This paper describes a framework for de-
veloping simulation-based evaluations that
accurately capture high-quality signals of the

1

technical skills held by candidates applying
to software engineering jobs at scale. Frame-
work-based evaluations are expertly designed
and highly structured, allowing engineering
and talent teams to efficiently scale their
hiring process and make effective hiring de-
cisions while providing a fair and engaging
experience for candidates.

Generally, the most essential task for soft-
ware engineers is creating software by
writing well-designed and efficient code that
solves problems. To succeed, software engi-
neers, particularly those who are in the initial
stages of their careers, must possess core
coding skills, including 1) basic coding con-
cepts, 2) data structures and manipulation, 3)
implementation efficiency and constraints,
and 4) solving problems through algorithms.

Although some forward-thinking organiza-
tions have started to create automated assess-
ment tools internally to evaluate these skills,
there are two major problems with this ap-
proach. Firstly, the internal teams rarely in-
clude experts in measurement or test design,
which may lead to the creation of assess-
ments that are not job-relevant or legally de-
fensible - i.e., may not be compliant with as-
sessment standards prescribed by the Equal
Employment Opportunities Commission
(EEOC) in the US [3]. Secondly, after internal
teams spend substantial time creating these
assessments, candidates may easily leak the
content online by posting the questions on
sites like Glassdoor and Stack Overflow. Once
leaked, candidates may easily get the answers
beforehand, so the content may no longer be
valid in evaluating technical skills.

The General Coding Skills Evaluation
Framework described in this paper can be
used to create Certified Evaluations to mea-
sure core coding skills. This Framework was
developed based on researching software en-

gineering jobs and consultation with subject
matter experts. Certified Evaluations pow-
ered by this framework are designed to as-
sess the key knowledge and skills that are: 1)
generally taught in computer science pro-
grams (including coding boot camps) and 2)
commonly required for software engineering
roles across a wide variety of organizations
and industries.

The research behind this Framework
helps to ensure that the content is job-rele-
vant and legally defensible or compliant with
EEOC prescriptions. Moreover, using a
Framework-backed approach allows the con-
tent to be scaled, with a large pool of ques-
tion variations that adhere to the same speci-
fications. With this approach, candidates are
presented with different but highly consistent
questions across Certified Evaluations. This
scalability reduces the ever-growing risk of
candidates gaining an unfair advantage by
accessing leaked questions in advance.

All Certified Evaluations powered by the
General Coding Framework provide hiring
organizations with a Coding Score, a holistic
and straightforward metric quantifying the
candidates’ core coding skills. Coding Scores
can be used by recruiters and hiring man-
agers to evaluate candidates at scale.

Framework Specifications
The General Coding Skills Evaluation

Framework is designed to simulate the typ-
ical coding workflow so candidates can dis-
play their core coding-related knowledge and
skills required for software engineering
roles. The purpose of this framework is to
provide a blueprint for developing valid and
reliable evaluations of candidates’ role-rele-
vant skills for software engineering and re-
lated roles at scale. The framework can be
utilized to create evaluations that span across

2

different delivery methods, such as pre-
screen assessments or technical interviews,
while providing objective signals by automat-
ically generating scores to quantify candi-
dates’ skills.

Evaluations based on this framework con-
sist of four modules, with one question each,
that require candidates to write code based
on specified requirements. Each module has
a slightly different focus, but all modules are
designed to capture one or more of these
core coding skills:

1. Basic Coding
2. Data Manipulation
3. Implementation Efficiency
4. Problem Solving

Candidates are given an opportunity to
demonstrate their skills by effectively solving
questions within the modules. For example,
solving Basic Coding questions demonstrates
skill in writing basic code to conduct basic
operations such as working with numbers,
strings, and arrays. Similarly, solving
Problem Solving questions demonstrates un-
derstanding of challenging computing prob-
lems and knowledge of algorithms that can
efficiently solve those problems (e.g., greedy,
two pointers, etc.).

To balance the breadth and depth of the
evaluation content with the goals of fostering
a positive candidate experience, the max-
imum allowed time for this framework is 70
minutes (for 4 code writing questions).
Longer evaluations allow for increased mea-
surement precision and improve the quality
of signal–however, the more time-intensive
evaluations become, the more reluctant can-
didates are to complete them. Moreover,
solving the questions in the given timeframe
is an important indicator of skill and a key
factor in differentiating between candidate

skill levels. This time-constrained process
simulates on-the-job demands, as software
engineers often balance multiple tasks simul-
taneously. Additionally, offering a limited,
70-minute timeframe helps prevent candi-
dates from engaging in behaviors such as
spending time searching for answers online,
further promoting the validity of evaluations
powered by the framework.

The following sections outline specifica-
tions for each module within the General
Coding Framework at a high level. These
specifications can be used to create varia-
tions of questions while ensuring evaluation
results are comparable across candidates and
attempts.

Module 1 – Basic Coding
This module contains one coding question

focusing on basic coding concepts and opera-
tions. On average, candidates are expected to
write 5-10 lines of code and solve this within
10 minutes.
Expected Knowledge

● Basic operations with numbers
● Basic string manipulation, such as

splitting a string into substrings or
modifying the elements of a string

● Basic array manipulation, such as iter-
ating over an array

Can Include
● Questions that require a combination

of 2 to 3 basic concepts, such as condi-
tionally iterating over an array, or con-
ditionally splitting a string

● Questions that should generally be
solvable using a single loop

● Clear descriptions of implementation
with step-by-step instructions

Should Exclude

3

● Questions that require noticing or
proving patterns

● Questions that require knowledge of
basic algorithms or optimization

● Questions that require designing or
figuring out implementation details

Module 2 – Data Manipulation
This module contains one coding question

focusing on manipulating data structures. On
average, candidates are expected to write 10-
20 lines of code and solve this within 15 min-
utes.
Expected Knowledge

● Working with numbers, including
○ Basic operations with numbers
○ Splitting numbers into digits

● Basic string manipulation
○ Splitting a string into substrings
○ Comparing strings

● Modifying elements of a string
○ Concatenating strings
○ Reversing strings

● Basic array manipulation
○ Iterating over an array
○ Modifying the elements of an

array
○ Reversing an array
○ Concatenating two arrays

Can Include
● Questions that require a combination

of 3 to 5 basic concepts, for example:
○ Splitting a string into sub-

strings, then modifying each
substring and comparing each
with other substrings

○ Iterating over an array to split
into two arrays, then modifying
the second array and appending
it to the first array

● Questions that should generally be
solvable using 1 to 2 nested loops

● Clear descriptions of implementation
with step-by-step instructions

Should Exclude
● Questions that require noticing or

proving patterns
● Questions that require knowledge of

basic algorithms or optimization

Module 3 – Implementation Efficiency
This module contains one coding question

focusing on implementing solutions that can
run efficiently and adheres to execution time
limits. On average, candidates are expected
to write 25-40 lines of code and solve this
within 20 minutes.
Expected Knowledge

● Includes everything from module 1
and module 2

● Splitting overall requirements into
subtasks or functions

● Manipulating multidimensional ar-
rays, for example:
○ Iterating over elements within

nested arrays in a given order
○ Transposing or pivoting the

rows and columns values in a
2D array

● Using built in hashmaps to store
strings or integers as keys

Can Include
● Implementing a specific comparator

for strings
● Implementing a specific merge func-

tion for arrays
● Other implementation challenges

which require translating step-by-step
instructions into code

Should Exclude

4

● Questions that require noticing or
proving patterns

● Questions that require algorithms with
advanced data structures, such as bi-
nary indexed trees

● Questions that require complex topics,
such as graphs, number theory, or dy-
namic programming

Module 4 – Problem Solving
This module contains one coding question

focusing on applying algorithmic techniques
to implement optimal solutions. On average,
candidates are expected to write 25-35 lines
of code and solve this within 30 minutes.
Expected Knowledge

● Includes everything from module 1,
module 2, and module 3

● Implementing common algorithms to
optimize solutions, such as greedy, di-
vide and conquer, and two pointers

● Implementing abstract data types such
as hashmaps within solutions

● Discrete mathematics fundamentals
Can Include

● Questions that require implementing
an appropriate algorithm, data struc-
ture, or technique

● Questions that require optimizing
queries using data structures like
hashmaps or sets

Should Exclude
● Questions designed like brain teasers
● Questions that require knowledge of

specialized or advanced algorithms,
such as Dijkstra, Kruskal, or Fast
Fourier transform (FFT)

● Questions with complicated or time-
consuming implementation steps that
would be difficult to optimize

Framework Example Content
Below are example questions for each module within the framework. Similar questions are

developed in accordance with framework specifications on an ongoing basis to minimize the
impact of leaks that could result in cheating or plagiarism, as well as provide relevant and fair
candidate experiences through changing industry standards.

Module 1 – Basic Coding
Given an array a, your task is to output an array b of the same length by applying the following transformation:

• For each i from 0 to a.length - 1 inclusive, b[i] = a[i - 1] + a[i] + a[i + 1]
• If an element in the sum a[i - 1] + a[i] + a[i + 1] does not exist, use 0 in its place
• For instance, b[0] = 0 + a[0] + a[1]

Example
For a = [4, 0, 1, -2, 3]:

• b[0] = 0 + a[0] + a[1] = 0 + 4 + 0 = 4
• b[1] = a[0] + a[1] + a[2] = 4 + 0 + 1 = 5
• b[2] = a[1] + a[2] + a[3] = 0 + 1 + (-2) = -1
• b[3] = a[2] + a[3] + a[4] = 1 + (-2) + 3 = 2
• b[4] = a[3] + a[4] + 0 = (-2) + 3 + 0 = 1

So, the output should be solution(a) = [4, 5, -1, 2, 1].

Sample Solution (python)
 1 def solution(a):

5

 2 n = len(a)
 3 b = [0 for _ in range(n)]
 4 for i in range(n):
 5 b[i] = a[i]
 6 if i > 0:
 7 b[i] += a[i - 1]
 8 if i < n - 1:
 9 b[i] += a[i + 1]
10 return b

Module 2 – Data Manipulation

You are given two strings: pattern and source. The first string pattern contains only the symbols 0 and 1, and
the second string source contains only lowercase English letters.

Your task is to calculate the number of substrings of source that match pattern.

We’ll say that a substring source[l..r] matches pattern if the following three conditions are met:
• The pattern and substring are equal in length.
• Where there is a 0 in the pattern, there is a vowel in the substring.
• Where there is a 1 in the pattern, there is a consonant in the substring.

Vowels are ["a", "e", "i", "o", "u", "y"]. All other letters are consonants.

Example
For pattern = "010" and source = "amazing", the output should be solution(pattern, source) = 2.

• "010" matches source[0..2] = "ama". The pattern specifies "vowel, consonant, vowel". "ama"
matches this pattern: 0 matches a, 1 matches m, and 0 matches a.

• "010" doesn’t match source[1..3] = "maz"
• "010" matches source[2..4] = "azi"
• "010" doesn’t match source[3..5] = "zin"
• "010" doesn’t match source[4..6] = "ing"

So, there are 2 matches.

For pattern = "100" and source = "codesignal", the output should be solution(pattern, source) = 0.
• There are no double vowels in the string "codesignal", so it’s not possible for any of its substrings to

match this pattern.

Guaranteed constraints:
• 1 ≤ source.length ≤ 103
• 1 ≤ pattern.length ≤ 103

Example Solution (python)

 1 vowels = ['a', 'e', 'i', 'o', 'u', 'y']
 2
 3 def check_for_pattern(pattern, source, start_index):
 4 for offset in range(len(pattern)):
 5 if pattern[offset] == '0':
 6 if source[start_index + offset] not in vowels:
 7 return 0
 8 else:
 9 if source[start_index + offset] in vowels:

6

10 return 0
11 return 1
12 def solution(pattern, source):
13 answer = 0
14 for start_index in range(len(source) - len(pattern) + 1):
15 answer += check_for_pattern(pattern, source, start_index)
16 return answer

Module 3 – Implementation Efficiency

You are given a matrix of integers field of size height × width representing a game field, and also a matrix of inte-
gers figure of size 3 × 3 representing a figure. Both matrices contain only 0s and 1s, where 1 means that the cell is
occupied, and 0 means that the cell is free.

1

You choose a position at the top of the game field where you put the figure and then drop it down. The figure
falls down until it either reaches the ground (bottom of the field) or lands on an occupied cell, which blocks it
from falling further. After the figure has stopped falling, some of the rows in the field may become fully occu-
pied.

Your task is to find the dropping position such that at least one full row is formed. As a dropping position, you
should return the column index of the cell in the game field which matches the top left corner of the figure’s 3 × 3
matrix. If there are multiple dropping positions satisfying the condition, feel free to return any of them. If there
are no such dropping positions, return -1.

Note: The figure must be dropped so that its entire 3 × 3 matrix fits inside the field, even if part of the matrix is
empty.

1The actual image is presented to candidates in an animated gif format, which can be viewed here.

7

https://lh6.googleusercontent.com/UnJZ0lMJpHQBu9M7lopvygP2GpdvsLvY0XuSgptIOz5nMutlG5liWuGfxEGjmmEPcgjhWgGaF5CTBK1KGstiablh00bV9Lubn4Za5IP3Mp8hpWF0-jDy6RLEpyml0FS9fWZxfTnbR812xa-sw9OQiZ5OBwm1TKBSsc5SSu5TVtZF8FVmO5SD6XbD

Examples
For
field = [[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0],
 [1, 0, 0],
 [1, 1, 0]]
and
figure = [[0, 0, 1],
 [0, 1, 1],
 [0, 0, 1]]
The output should be solution(field, figure) = 0.
Because the field is a 3 x 3 matrix, the figure can be dropped only from position 0. When the figure stops
falling, two fully occupied rows are formed, so dropping position 0 satisfies the condition.

2

For
field = [[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [1, 1, 0, 1, 0],
 [1, 0, 1, 0, 1]]
and
figure = [[1, 1, 1],
 [1, 0, 1],
 [1, 0, 1]]

the output should be solution(field, figure) = 2.

The figure can be dropped from three positions: 0, 1, and 2. As you can see below, a fully occupied row will be
formed only when dropping from position 2:

2 The actual image is presented to candidates in an animated gif format, which can be viewed here.

8

https://lh5.googleusercontent.com/bqxvOiBp4_B4kE0CXThqicz3mHlM-nW7eC6muY3grp4VP6bznxdKPXL2BL0oZe9IjPvt0iHbHLDMnK9ieuAve4HmvCcFgYDKxOJvh5bWHOD8tFlO1BgeDJ88-B42wbZufYj5hGIGYSjgVl_FTJkTJuMOuQnsLrrB0gB40Kp58-RChWWvXv7G3wBN

3

Sample Solution (python)
 1 def solution(field, figure):
 2 height = len(field)
 3 width = len(field[0])
 4 figure_size = len(figure)
 5
 6 for column in range(width - figure_size + 1):
 7 row = 1
 8 while row < height - figure_size + 1:
 9 can_fit = True
10 for dx in range(figure_size):
11 for dy in range(figure_size):
12 if field[row + dx][column + dy] == 1 and figure[dx][dy] == 1:
13 can_fit = False
14 if not can_fit:
15 break
16 row += 1
17 row -= 1
18

3 The actual image is presented to candidates in an animated gif format, which can be viewed here.

9

https://lh3.googleusercontent.com/TKbcHfdrd-h50SY1r7YcnAJhhsEgm4K6dj9UkUmPTkVbi8RvH0D6bVkidmyQKBxVnOjEbci-SVGGGuYOTiuNYddm-xeR4oJrtQ0PhMOzb6dt2llhhHzWSCBzHjCw33hOC7xRFVHpCrMUcmRKlR6jAjBikwHpZrK_k8QmcO58NltjgU_6YnhzRQJC

19 for dx in range(figure_size):
20 row_filled = True
21 for column_index in range(width):
22 if not (field[row + dx][column_index] == 1 or
23 (column <= column_index < column + figure_size and\
24 figure[dx][column_index - column] == 1)):
25 row_filled = False
26 if row_filled:
27 return column
28 return -1

Module 4 – Problem Solving

Given an array of unique integers numbers, your task is to find the number of pairs of indices (i, j) such
that i ≤ j and the sum numbers[i] + numbers[j] is equal to some power of 2. Note: The numbers 20 = 1, 21 =
2, 22 = 4, 23 = 8, etc. are considered to be powers of 2.

Examples
For numbers = [1, -1, 2, 3], the output should be solution(numbers) = 5.

• There is one pair of indices where the sum of the elements is 20 = 1: (1, 2): numbers[1] + numbers[2]
= -1 + 2 = 1

• There are two pairs of indices where the sum of the elements is 21 = 2: (0, 0) and (1, 3)
• There are two pairs of indices where the sum of the elements is 22 = 4: (0, 3) and (2, 2)
• In total, there are 1 + 2 + 2 = 5 pairs summing to powers of 2.

For numbers = [2], the output should be solution(numbers) = 1.
• The only pair of indices is (0, 0) and the sum is equal to 22 = 4. So, the answer is 1.

For numbers = [-2, -1, 0, 1, 2], the output should be solution(numbers) = 5.
• There are two pairs of indices where the sum of the elements is 20 = 1: (2, 3) and (1, 4)
• There are two pairs of indices where the sum of the elements is 21 = 2: (2, 4) and (3, 3)
• There is one pair of indices where the sum of the elements is 22 = 4: (4, 4)
• In total, there are 2 + 2 + 1 = 5 pairs summing to powers of 2.

Guaranteed constraints:
• 1 ≤ numbers.length ≤ 105
• -106 ≤ numbers[i] ≤ 106

Sample Solution (python)

 1 from collections import defaultdict
 2
 3 def solution(numbers):
 4 counts = defaultdict(int)
 5 answer = 0
 6 for element in numbers:
 7 counts[element] += 1
 8 for two_power in range(21):
 9 second_element = (1 << two_power) - element
10 answer += counts[second_element]
11 return answer

10

Evaluation Scoring
To effectively quantify core coding skills

required for software engineering roles,
questions within the General Coding Frame-
work prompt candidates to design and create
software by understanding user require-
ments and writing code to create functional
applications. Consistent with this design,
General Coding Framework Certified Evalua-
tions are scored via unit testing. Given user
requirements on expected functions or be-
haviors of software, a set of test cases verify
the functionality of different components, or
units, within the software by providing
sample input (i.e., data, context, conditions)
and checking whether the software produces
expected outcomes consistent with user re-
quirements. Specifically, test cases to verify
whether the code submitted by candidates as
solutions can meet the requirements of that
specific question by producing expected out-
puts. Moreover, since each test case gener-
ally has a binary correct vs. incorrect out-
come, all questions are designed with a set of
test cases to cover complex and multifaceted
requirements within questions.

For Certified Evaluations created from the
General Coding Framework, the solution to
each question is scored by calculating the
proportion of test cases passed/solved over
the entire set of test cases for that question.
All test cases are equally weighted within and
across questions. Since scores for individual
questions are aggregated into a Coding Score,
overall candidate performance is ultimately
based on the total number of test cases
passed by their solutions across all questions
within the Framework.

All evaluations created from the General
Coding Framework will produce a Coding
Score4, which is designed to be a valid, reli-
able, and straightforward representation of a
candidate’s core coding skills. Coding Scores
range between 200 (lowest) to 600 (highest),
increasing as candidates partially or fully
solve each of the questions within the Frame-
work. Figure 1 presents the distribution of
Coding Scores among a large sample of can-
didates who have attempted a General
Coding Framework Certified Evaluation, and
Table 1 describes skill profiles of candidates
based on which modules they fully solved in
their evaluation.

Although the Coding Score does not explic-
itly incorporate speed of execution or effi-
ciency in its calculation, efficiency and speed
are implicitly captured due to the time limit.
Candidates who are able to work efficiently
will be able to complete more requirements
and solve more questions in the allotted time
frame, resulting in higher scores than candi-
dates who are not able to work efficiently.

Research Identifying Core Coding
Skills

Our primary aim in developing the Gen-
eral Coding Skills Evaluation Framework is to
facilitate the creation of standardized, job-
relevant, and simulation-based measures that
can effectively evaluate the core technical
skills required for software engineering roles
across industries and at scale. Since the pri-
mary activity shared across most software en-
gineer roles is writing code to create soft-
ware, we started by identifying the most
common topics relevant for coding skills via
the following research questions:

4 The latest version of CodeSignal’s Coding Score system is called Coding Score 2023, which differs from previous
versions of Coding Score. Please see this support article for more details.

11

https://support.codesignal.com/hc/en-us/articles/13261190299287-Understanding-Coding-Score-2023

Figure 1. Coding Score distribution for a sample of N > 200,000 candidates who have attempted a General
Coding Framework Certified Evaluation.

1. What are the most common topics
taught in reputable computer science
programs at post-secondary educa-
tional institutions in the US?

2. What are the most common topics cov-
ered during technical interviews at in-
novative and accomplished organiza-
tions in the US?

3. What are the most frequently asked
questions on online communities for

developers, such as Stack Overflow, on
general programming concepts and
not specialized domain knowledge?

To address question 1, we reviewed syllabi
from courses on MIT OpenCourseWare
(OCW) [4], EdX [5], Coursera [6], and Udacity
[7]. To address question 2, we reviewed ques-
tions from technical interview preparation
resources [8], CodeSignal Interview Practice
Mode [9], Leetcode [10], CareerCup [11], and

12

Glassdoor [12]. To address question 3, we
scraped data from Stack Overflow’s public
API [13]. After gathering a wide range of
topics, we conducted thematic analysis [14] to
identify higher-order themes through an iter-
ative process. Specifically, we identified
themes by:

1. Thoroughly reviewing all of the docu-
mented topics.

2. Analyzing similarities and trends
among the topics.

3. Grouping topics together based on se-
mantic similarities and relationships
with other topics

4. Iteratively repeating the above steps
until coherent themes were formed

5. Naming and defining themes based on
underlying topics

Score
Solved

Questions Candidate Skill Profile*

200 – 279 None The candidate may be able to write simple code to per-
form some operations.

296 1 The candidate is familiar with programming and can
write simple code to perform some operations.

396 1 & 2

The candidate has solid implementation skills, can solve
some algorithmic tasks, and can work with built-in data
types and implement the desired solution. Most tech
companies require only these skills for the job.

496 1, 2, & 3
The candidate has good problem-solving skills, is fa-
miliar with algorithms, and can implement ideas that
don’t require a high degree of innovative thinking.

500 1, 2, & 4
The candidate has great algorithmic, problem-solving,
and implementation skills and can develop complex ap-
plications.

600 1, 2, 3, & 4
The candidate has excellent algorithmic, problem-
solving, and implementation skills and can develop large,
complex applications efficiently.

Note: Actual candidate skill profiles will vary depending on individual performance factors.

Table 1. Score Guidelines for General Coding Framework Certified Evaluations

Results of the thematic analysis high-
lighted 4 major themes that represent core
aspects of coding skills required by all profes-
sional software engineers jobs, especially for

early talent or entry-level jobs. The first
major theme is Basic Coding. This was de-
rived from foundational topics and concepts
that allow candidates to write 5-10 lines of

13

basic code which executes a simple opera-
tion, such as knowing the syntax for using
built-in functions to transform an array in a
simple way. Because such topics set the foun-
dation for all code writing activities, this is an
important skill for all software engineering
jobs.

The second major theme is Data Manipu-
lation. This was derived from topics related
to working standard data structures in com-
puting operations, such as strings and arrays.
Prevalence of such topics in interview ques-
tions suggests that proficiency in manipu-
lating standard data structures is emphasized
in hiring processes for organizations that are
not explicitly focused on technology. As
such, this is an important skill for most soft-
ware engineering jobs.

The third major theme is Implementation
Efficiency. This was derived from topics re-
lated to translating user requirements into
functional code that runs at a reasonable
speed. Specifically, given that efficiency is a
core tenant in software development, writing
code that accounts for time complexity and
can execute within a strict time limit is an im-
portant activity for software engineers. Thus,
this is an important skill required by many
software engineering jobs. The fourth major
theme is Problem Solving. This was derived
from topics related to applying algorithmic
techniques to create optimal solutions for
moderately complex computing problems.
Given that algorithms provide a structured
approach to finding solutions that are effi-
cient, accurate, and consistent, they are a
crucial aspect of software engineering and
development. Thus, this is an important skill
required by many software engineering jobs.

After uncovering the core themes dis-
cussed above, we verified the relevance of
these skills for software engineering and de-

velopment jobs with an advisory board of
subject matter experts in hiring software en-
gineers across a wide range of organizations
and industries (see Acknowledgements).
Based on expert consensus, we finalized the
themes and topics that represent the core
coding skills captured by the General Coding
Skills Evaluation Framework.

References
[1] Gnanasambanda, C., Palaniappan, J., &

Schneide, J. (2022). Every company is a software
company: Six ‘must dos’ to succeed. McKinsey
Digital: https://www.mckinsey.com/
capabilities/mckinsey-digital/our-insights/
every-company-is-a-software-company-six-
must-dos-to-succeed

[2] U.S. Bureau of Labor Statistics. Software Devel-
opers, Quality Assurance Analysts, and Testers.
Occupational Outlook Handbook: https://
www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm

[3] U.S. Equal Employment Opportunities Commis-
sion. (2007). Employment Tests and Selection Pro-
cedures: https://www.eeoc.gov/laws/guidance/
employment-tests-and-selection-procedures

[4] MIT OpenCourseWare: https://ocw.mit.edu/

[5] edX: https://www.edx.org/

[6] Coursera: https://www.coursera.org/

[7] Udacity: https://www.udacity.com/

[8] McDowell, G. L. (2015). Cracking the Coding In-
terview: 189 Programming Questions and Solu-
tions: https://isbnsearch.org/isbn/0984782869

[9] CodeSignal: https://app.codesignal.com/inter-
view-practice

[10] LeetCode: https://leetcode.com/

[11] CareerCup: https://www.careercup . com/

[12] Glassdoor: https://www.glassdoor.c om/

[13] Stack Exchange API: https://api.stackex-
change.com/

[14] Braun, V., & Clarke, V. (2012). Thematic anal-
ysis. In H. Cooper, P. M. Camic, D. L. Long, A.

14

https://api.stackexchange.com/
https://api.stackexchange.com/
https://www.glassdoor.com/
https://www.careercup.com/
https://www.careercup.com/
https://leetcode.com/
https://app.codesignal.com/interview-practice
https://app.codesignal.com/interview-practice
https://www.udacity.com/
https://www.coursera.org/
https://www.edx.org/
https://www.glassdoor.com/
https://www.careercup.com/
https://isbnsearch.org/isbn/0984782869
https://ocw.mit.edu/
https://www.eeoc.gov/laws/guidance/employment-tests-and-selection-procedures
https://www.eeoc.gov/laws/guidance/employment-tests-and-selection-procedures
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-1
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-1
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-1
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-is-a-software-company-six-must-dos-to-succeed
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-is-a-software-company-six-must-dos-to-succeed
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/every-company-is-a-software-company-six-must-dos-to-succeed

T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA
handbook of research methods in psychology, Vol. 2.
Research designs: Quantitative, qualitative, neu-
ropsychological, and biological (pp. 57–71). Amer-
ican Psychological Association.
https://doi.org/10.1037/13620-004

Acknowledgments
We are extremely grateful to the engineering advi-

sory board of the #GoBeyondResumes movement for
kindly reviewing and providing feedback on the Gen-
eral Coding Framework, including: Anima Anand-
kumar, Director of Machine Learning Research @
NVIDIA and professor @ Caltech; Chris Kanaan, SVP
of Engineering @ Ripple; Jessica McKellar, CTO @
Pilot; Kah Seng Tay , VP of Engineering @ Drive.ai; Lei
Yang, VP of Engineering @ Quora; Nate Kupp, Di-
rector of Engineering @ Thumbtack; Nimrod Hooen,
Director of Engineering @ Facebook; Surabhi Gupta,
Director of Engineering @ Airbnb; Yoann Roman, Di-
rector of Engineering @ Yelp.

We’d also like to thank the following for their de-
tailed review and feedback on this paper.: Aram
Shatakhtsyan, CTO @ CodeSignal; Eduard Piliposyan,
Director of Engineering @ CodeSignal; and Michael
Newman, VP of Engineering @ CodeSignal.

Authors
Albert Sahakyan is a Data Science researcher at

Yerevan State University and an Engineering Manager
at CodeSignal. He is an internationally recognized
Software Engineer, who won a Bronze medal at the In-
ternational Olympiad in Informatics in 2013 and was
one of the World Finalists in the International Colle-
giate Programming Contest that took place in Rapid
City, South Dakota in 2017. Albert received his Ph.D. in
Mathematics from Yerevan State University in 2022.

Tigran Sloyan is the Co-Founder and CEO of
CodeSignal, a leading technical interview and assess-
ment platform that helps companies go Beyond the
NoiseTM with early-stage assessments, technical
screens, and live coding interviews. As an active
member of the Forbes Technology Council, Tigran
regularly contributes to Forbes, Morning Brew, Fast
Company, Recruiting Daily, and other major publica-
tions. Tigran is a frequent industry keynote, a TED
speaker, and a thought leader in the technical hiring
industry, commenting on trends in talent acquisition,
diversity, and innovation. Tigran received BS degrees
in both Mathematics and Computer Science with a
minor in Economics from the Massachusetts Institute
of Technology (MIT).

15

https://doi.org/10.1037/13620-004

