
Front-End Development
Skills Evaluation Framework

Technical Brief

Introduction

Front-End engineers are responsible for
the planning, designing, building and imple-
mentation of user interface systems for web-
based applications and/or software
programs. The demand for this role is
projected to grow by 13% from 2020 to 20301

as there is more emphasis across the industry
around what product excellence means and
how to design for an intuitive and excellent
user experience. While many companies are
looking for front-end engineers who have
experience in one of the common frame-
works such as React, Angular, and Vue.js, this
framework paper will dive into the impor-
tance of mastering the fundamental building
blocks of front-end development that include
HTML, CSS, JavaScript.

Although front-end engineers share many
of the core skills and knowledge with Soft-
ware engineers such as problem solving and
code-writing, the Front-End Development
Framework is designed specifically to assess
additional skills that are unique to Front-End
engineers such as being able to translate UX
design into functional applications, coordi-
nating and handling back-end APIs, and
understanding how to design intuitive and

responsive applications.
This paper goes into detail about our

guidelines for creating the framework based
on consultation with subject matter experts
with an emphasis on common core skills. We
will then illustrate how the score is calculated
as well as how the results map to the core
skills for Front-End engineers.

Framework Specifications

This framework is designed to model
closely to what the engineer would be
expected to perform on the job. It can be
utilized across different methods of delivery,
assessment or interview, while preserving its
objectivity by automatically calculating the
final score.

The maximum allowed completion time
for the framework is 90 minutes and it
consists of 4 levels that are progressive in
nature in mimicking a real world scenario.
The scenario and what is being assessed
should be common applications and/or
features that ideally would not create any
unfair advantages or disadvantages to candi-
date populations (e.g. asking a candidate to
implement a short order or support limit
feature are not ideal since it can create unfair

1 Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Web Developers and Digital
Designers, at https://www.bls.gov/ooh/computer-and-information-technology/web-developers.htm

1

advantages for candidates who may have
prior trading knowledge as well as the
concepts require too much elaboration in a
limited time setting). Possible scores range
from 200 to 600.

Level 1 – Common Layout and Basic
Rendering

The average time for solving this level
should be 15 minutes.

Expected Knowledge
• HTML layout and structure
• Document-Object Model (DOM)
• CSS styling

Can Include
• Standard HTML tags and attributes

that are supported by common
browsers (Chrome, Safari, Firefox,
Edge)

• Simple scripting with JavaScript (e.g.,
rendering UI elements based on stati-
cally provided JSON-style data)

• Straightforward use of CSS for styling

Should Exclude
• Complex scripting with JavaScript

(e.g., user interactions, calling APIs)
• CSS animations/transitions
• Tricky CSS cascading/selector speci-

ficity logic
• Responsive design
• SVG markup
• Cross-browser compatibility
• Knowledge of particular HTML/

templating or CSS/styling frameworks,
including jQuery

Level 2 – Dynamic Interaction

The average time for solving this level
should be 25 minutes.

Expected Knowledge
• Everything from the prior level
• Dynamic interactions using JavaScript

and advanced CSS

Can Include
• Handling user actions in JavaScript
• Mutating the DOM using JavaScript
• Implementing data inputs and data

validation

Should Exclude
• CSS animations/transitions
• Responsive design
• Interaction with APIs
• Cross-browser compatibility
• Knowledge of particular HTML/

templating or CSS/styling frameworks,
including jQuery

Level 3 – Consuming an API

The average time for solving this level
should be 30 minutes.

Expected Knowledge
• Everything from the prior levels
• Using asynchronous JavaScript to

interact with an API

Can Include
• Knowledge of REST API standards
• Knowledge of how to asynchronously

call remote APIs from the browser
• Basic/simple auth strategies like

putting a token or password in HTTP
headers

• Handling API errors and response

2

codes
• Working with APIs that include pagi-

nation
• Calling multiple, possibly dependent,

API endpoints asynchronously

Should Exclude
• Less commonly used API protocols

(e.g., WinForms, SOAP, RPCs,
GraphQL)

• HTML form submissions (non-AJAX)
• Complex auth strategies like OAuth
• Websockets
• Server-side knowledge or implementa-

tion of the API

• Knowledge of particular JS libraries
used for API interaction (e.g., axios,
jQuery)

Level 4 – Extending Design Functionality

The average time for solving this level
should be 20 minutes. Level 4 does not intro-
duce any new fundamental skills or knowl-
edge that are being evaluated, but it is
focused on evaluating how candidates have
approached the requirements up to this point
and evolve its design to accommodate the
expanded, yet related, requirements.

Expected Knowledge
• Everything from the prior levels

Framework Example Content

Below is an example of a question that is developed based on the structure of the frame-
work. Similar questions are also created and monitored on an ongoing basis to ensure overall
consistency as well as preventing widespread cheating and plagiarisms.

Scenario: Implement a simple task tracking application

Level 1 – Common Layout and Basic Rendering

The designer has provided you with the starting HTML template, the requirement is to take the provided JSON
file data.json (see below) to properly assign the provided tasks into their corresponding columns based on the
returned values: “To-do”, “In Progress”, “Done”.

Starting HTML Template

 1 <div className="board">
 2 <h2 className="board__title">Tasks</h2>
 3 <div className="board__columns">
 4 <div className="column">
 5 <h2 className="column__title">TO_DO</h2>
 6 <div className="column__cards">
 7 <div className="card">
 8 <h3 className="card__title">Task 1</h3>
 9 <p className="card__description">Detailed task 1 description</p>
10 </div>
11 </div>
12 </div>
13 </div>
14 </div>

3

data.json

 1 {
 2 "todoItems": [
 3 {
 4 "title": "Task 3",
 5 "description": "Detailed task 3 description",
 6 "status": "TO_DO",
 7 "userId": "userId2"
 8 }
 9],
10 "inProgressItems": [
11 {
12 "title": "Task 1",
13 "description": "Detailed task 1 description",
14 "status": "IN_PROGRESS",
15 "userId": "userId1"
16 }
17],
18 "doneItems": [
19 {
20 "title": "Task 2",
21 "description": "Detailed task 2 description",
22 "status": "DONE",
23 "userId": "userId2"
24 }
25]
26 }

Level 2 – Dynamic Interaction

The designer has provided you with the following HTML template to add a form so that new tasks can be added
to the board:

New Task HTML Template

1 <form>
2 <div class="input-container">
3 <input name="taskTitle" placeholder="Task title*" value=""></div>
4 <div class="input-container">
5 <textarea name="taskDescription" placeholder="Task description*"></textarea></div>
6 <div>
7 <input type="submit" value="Create task"></div>
8 </form>

You are asked to support the following requirements:
• Enable users to create and append a new task that by default gets added to status TO_DO.

Level 3 – Consuming an API

The back-end API is now available to consume which allows you to get a list of all tasks to display on the board.
The response of the API is slightly different format compared to the static JSON that is provided in Level 1:

Response to https://contentapi.codesignal.com/tasks

4

 1 {
 2 "data": [
 3 {
 4 "title": "Task 1",
 5 "description": "Detailed task 1 description",
 6 "status": "IN_PROGRESS",
 7 "assignedUser": "userId1"
 8 },
 9 {
10 "title": "Task 2",
11 "description": "Detailed task 2 description",
12 "status": "DONE"
13 },
14 {
15 "title": "Task 3",
16 "description": "Detailed task 3 description",
17 "status": "TO_DO",
18 "assignedUser": "userId2"
19 }
20]
21 }

You are asked to use the updated task card template so that you can appropriately display the assigned user by
consuming a separately API endpoint:

Response to https://contentapi.codesignal.com/users/{userId}

1 {
2 "id": "userId1",
3 "firstName": "Andrew",
4 "lastName": "Quill"
5 }

Level 4 – Extending Design Functionality

Enable users to move the tasks between different columns on the board - “Move right” and “Move left”. When the
user presses the “Move right” button, the card must be moved to the column on the right unless it is at the right -
most column. Apply the same logic to “Move left” as well. The very left column tasks shouldn’t include the “Move
left” button, as well as the very right column tasks shouldn’t include the “Move right” button. The designer has
provided you with the HTML template for the new buttons rendering:

Move card buttons HTML template

 1 <div className="card__buttons">
 2 <button
 3 aria-label="button left"
 4 className="card__button card__button--left"
 5 type="button"
 6 />
 7 <button
 8 aria-label="button right"
 9 className="card__button card__button--right"
10 type="button"
11 />
12 </div>

5

